BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30789732)

  • 1. Structural and Thermodynamic Signatures of Ligand Binding to the Enigmatic Chitinase D of Serratia proteamaculans.
    Madhuprakash J; Dalhus B; Vaaje-Kolstad G; Sakuda S; Podile AR; Eijsink VGH; Sørlie M
    J Phys Chem B; 2019 Mar; 123(10):2270-2279. PubMed ID: 30789732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of three Serratia marcescens chitinases in chitin conversion are reflected in different thermodynamic signatures of allosamidin binding.
    Baban J; Fjeld S; Sakuda S; Eijsink VG; Sørlie M
    J Phys Chem B; 2010 May; 114(18):6144-9. PubMed ID: 20397673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic Relationships with Processivity in Serratia marcescens Family 18 Chitinases.
    Hamre AG; Jana S; Holen MM; Mathiesen G; Väljamäe P; Payne CM; Sørlie M
    J Phys Chem B; 2015 Jul; 119(30):9601-13. PubMed ID: 26154587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple chitinases of an endophytic Serratia proteamaculans 568 generate chitin oligomers.
    Purushotham P; Sarma PV; Podile AR
    Bioresour Technol; 2012 May; 112():261-9. PubMed ID: 22406064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic efficiency of chitinase-D on insoluble chitinous substrates was improved by fusing auxiliary domains.
    Madhuprakash J; El Gueddari NE; Moerschbacher BM; Podile AR
    PLoS One; 2015; 10(1):e0116823. PubMed ID: 25615694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic analysis of allosamidin binding to a family 18 chitinase.
    Cederkvist FH; Saua SF; Karlsen V; Sakuda S; Eijsink VG; Sørlie M
    Biochemistry; 2007 Oct; 46(43):12347-54. PubMed ID: 17915946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides.
    Vaaje-Kolstad G; Horn SJ; Sørlie M; Eijsink VG
    FEBS J; 2013 Jul; 280(13):3028-49. PubMed ID: 23398882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures and inhibitor binding properties of plant class V chitinases: the cycad enzyme exhibits unique structural and functional features.
    Umemoto N; Kanda Y; Ohnuma T; Osawa T; Numata T; Sakuda S; Taira T; Fukamizo T
    Plant J; 2015 Apr; 82(1):54-66. PubMed ID: 25652217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processivity, Substrate Positioning, and Binding: The Role of Polar Residues in a Family 18 Glycoside Hydrolase.
    Hamre AG; Jana S; Reppert NK; Payne CM; Sørlie M
    Biochemistry; 2015 Dec; 54(49):7292-306. PubMed ID: 26503416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme processivity changes with the extent of recalcitrant polysaccharide degradation.
    Hamre AG; Lorentzen SB; Väljamäe P; Sørlie M
    FEBS Lett; 2014 Dec; 588(24):4620-4. PubMed ID: 25447535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiation of the synergistic activities of chitinases ChiA, ChiB and ChiC from Serratia marcescens CFFSUR-B2 by chitobiase (Chb) and chitin binding protein (CBP).
    Gutiérrez-Román MI; Dunn MF; Tinoco-Valencia R; Holguín-Meléndez F; Huerta-Palacios G; Guillén-Navarro K
    World J Microbiol Biotechnol; 2014 Jan; 30(1):33-42. PubMed ID: 23824666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens.
    Horn SJ; Sørbotten A; Synstad B; Sikorski P; Sørlie M; Vårum KM; Eijsink VG
    FEBS J; 2006 Feb; 273(3):491-503. PubMed ID: 16420473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Structurally Novel Chitinase from the Chitin-Degrading Hyperthermophilic Archaeon Thermococcus chitonophagus.
    Horiuchi A; Aslam M; Kanai T; Atomi H
    Appl Environ Microbiol; 2016 Jun; 82(12):3554-3562. PubMed ID: 27060120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of long-chain chitooligosaccharides by a hypertransglycosylating processive endochitinase of Serratia proteamaculans 568.
    Purushotham P; Podile AR
    J Bacteriol; 2012 Aug; 194(16):4260-71. PubMed ID: 22685288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromatic-Mediated Carbohydrate Recognition in Processive Serratia marcescens Chitinases.
    Jana S; Hamre AG; Wildberger P; Holen MM; Eijsink VG; Beckham GT; Sørlie M; Payne CM
    J Phys Chem B; 2016 Feb; 120(7):1236-49. PubMed ID: 26824449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of substrate binding energies in individual subsites of a family 18 chitinase.
    Norberg AL; Karlsen V; Hoell IA; Bakke I; Eijsink VG; Sørlie M
    FEBS Lett; 2010 Nov; 584(22):4581-5. PubMed ID: 20965174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitin binding proteins act synergistically with chitinases in Serratia proteamaculans 568.
    Purushotham P; Arun PV; Prakash JS; Podile AR
    PLoS One; 2012; 7(5):e36714. PubMed ID: 22590591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular directionality in crystalline beta-chitin: hydrolysis by chitinases A and B from Serratia marcescens 2170.
    Hult EL; Katouno F; Uchiyama T; Watanabe T; Sugiyama J
    Biochem J; 2005 Jun; 388(Pt 3):851-6. PubMed ID: 15717865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of enzymatic chitin degradation by a lytic polysaccharide monooxygenase.
    Hamre AG; Eide KB; Wold HH; Sørlie M
    Carbohydr Res; 2015 Apr; 407():166-9. PubMed ID: 25812992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative studies of chitinases A and B from Serratia marcescens.
    Brurberg MB; Nes IF; Eijsink VG
    Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1581-9. PubMed ID: 8757722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.