These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 30790045)
41. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805 [TBL] [Abstract][Full Text] [Related]
42. Polymersome production on a microfluidic platform using pH sensitive block copolymers. Brown L; McArthur SL; Wright PC; Lewis A; Battaglia G Lab Chip; 2010 Aug; 10(15):1922-8. PubMed ID: 20480087 [TBL] [Abstract][Full Text] [Related]
43. When microfluidic devices go bad. How does fouling occur in microfluidic devices, and what can be done about it? Mukhopadhyay R Anal Chem; 2005 Nov; 77(21):429A-432A. PubMed ID: 16285143 [No Abstract] [Full Text] [Related]
44. Artificial Vascular with Pressure-Responsive Property based on Deformable Microfluidic Channels. Chen Z; Fan L; Chen S; Zhao H; Zhang Q; Qu Y; Huang Y; Yu X; Sun D Adv Healthc Mater; 2024 Aug; 13(20):e2304532. PubMed ID: 38533604 [TBL] [Abstract][Full Text] [Related]
45. Lateral and cross-lateral focusing of spherical particles in a square microchannel. Choi YS; Seo KW; Lee SJ Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415 [TBL] [Abstract][Full Text] [Related]
46. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests. Mauk MG; Liu C; Qiu X; Chen D; Song J; Bau HH Methods Mol Biol; 2017; 1572():467-488. PubMed ID: 28299706 [TBL] [Abstract][Full Text] [Related]
47. Microfluidic Based Optical Microscopes on Chip. Paiè P; Martínez Vázquez R; Osellame R; Bragheri F; Bassi A Cytometry A; 2018 Oct; 93(10):987-996. PubMed ID: 30211977 [TBL] [Abstract][Full Text] [Related]
48. Development of Microfluidic Dilution Network-Based System for Lab-on-a-Chip Microalgal Bioassays. Zheng G; Lu L; Yang Y; Wei J; Han B; Zhang Q; Wang Y Anal Chem; 2018 Nov; 90(22):13280-13289. PubMed ID: 30345743 [TBL] [Abstract][Full Text] [Related]
49. Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing. Park SG; Lee SK; Moon JH; Yang SM Lab Chip; 2009 Nov; 9(21):3144-50. PubMed ID: 19823731 [TBL] [Abstract][Full Text] [Related]
50. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Schumacher S; Nestler J; Otto T; Wegener M; Ehrentreich-Förster E; Michel D; Wunderlich K; Palzer S; Sohn K; Weber A; Burgard M; Grzesiak A; Teichert A; Brandenburg A; Koger B; Albers J; Nebling E; Bier FF Lab Chip; 2012 Feb; 12(3):464-73. PubMed ID: 22038328 [TBL] [Abstract][Full Text] [Related]
51. A Review of Microfluidic Experimental Designs for Nanoparticle Synthesis. Niculescu AG; Mihaiescu DE; Grumezescu AM Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955420 [TBL] [Abstract][Full Text] [Related]
52. Assembly and simple demonstration of a micropump installing PDMS-based thin membranes as flexible micro check valves. Tanaka Y; Sato K; Kitamori T J Biomed Nanotechnol; 2009 Oct; 5(5):516-20. PubMed ID: 20201426 [TBL] [Abstract][Full Text] [Related]
53. Design and evaluation of a Dean vortex-based micromixer. Howell PB; Mott DR; Golden JP; Ligler FS Lab Chip; 2004 Dec; 4(6):663-9. PubMed ID: 15570382 [TBL] [Abstract][Full Text] [Related]
54. A practical liquid plug flow-through polymerase chain-reaction system based on a heat-resistant resin chip. Fuchiwaki Y; Saito M; Wakida S; Tamiya E; Nagai H Anal Sci; 2011; 27(3):225-30. PubMed ID: 21415501 [TBL] [Abstract][Full Text] [Related]
55. Fabrication of electro-microfluidic channel for single cell electroporation. Shahini M; van Wijngaarden F; Yeow JT Biomed Microdevices; 2013 Oct; 15(5):759-66. PubMed ID: 23494596 [TBL] [Abstract][Full Text] [Related]
56. A digital microfluidic method for multiplexed cell-based apoptosis assays. Bogojevic D; Chamberlain MD; Barbulovic-Nad I; Wheeler AR Lab Chip; 2012 Feb; 12(3):627-34. PubMed ID: 22159547 [TBL] [Abstract][Full Text] [Related]
57. A simple microfluidic gradient generator with a soft-lithographically prototyped, high-aspect-ratio, ~2 µm wide microchannel. Ogawa T; Matsunaga N; Inomata S; Tanaka M; Futai N Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5521-4. PubMed ID: 24110987 [TBL] [Abstract][Full Text] [Related]
58. Numerical and experimental characterization of a novel modular passive micromixer. Pennella F; Rossi M; Ripandelli S; Rasponi M; Mastrangelo F; Deriu MA; Ridolfi L; Kähler CJ; Morbiducci U Biomed Microdevices; 2012 Oct; 14(5):849-62. PubMed ID: 22711456 [TBL] [Abstract][Full Text] [Related]
59. Switchable Hydrophobic Valve for Controlled Microfluidic Processing. Biswas GC; Watanabe T; Carlen ET; Yokokawa M; Suzuki H Chemphyschem; 2016 Mar; 17(6):817-21. PubMed ID: 26822293 [TBL] [Abstract][Full Text] [Related]
60. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a "Chip-Olate" Process. Temiz Y; Delamarche E Methods Mol Biol; 2017; 1547():25-36. PubMed ID: 28044284 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]