These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 30790189)

  • 1. Computing Weakly Reversible Deficiency Zero Network Translations Using Elementary Flux Modes.
    Johnston MD; Burton E
    Bull Math Biol; 2019 May; 81(5):1613-1644. PubMed ID: 30790189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Computational Approach to Steady State Correspondence of Regular and Generalized Mass Action Systems.
    Johnston MD
    Bull Math Biol; 2015 Jun; 77(6):1065-100. PubMed ID: 25895700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Deficiency-Based Approach to Parametrizing Positive Equilibria of Biochemical Reaction Systems.
    Johnston MD; Müller S; Pantea C
    Bull Math Biol; 2019 Apr; 81(4):1143-1172. PubMed ID: 30599071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network Translation and Steady-State Properties of Chemical Reaction Systems.
    Tonello E; Johnston MD
    Bull Math Biol; 2018 Sep; 80(9):2306-2337. PubMed ID: 30088181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multistationarity and Bistability for Fewnomial Chemical Reaction Networks.
    Feliu E; Helmer M
    Bull Math Biol; 2019 Apr; 81(4):1089-1121. PubMed ID: 30564990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computing weakly reversible linearly conjugate chemical reaction networks with minimal deficiency.
    Johnston MD; Siegel D; Szederkényi G
    Math Biosci; 2013 Jan; 241(1):88-98. PubMed ID: 23079395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational approach to persistence, permanence, and endotacticity of biochemical reaction systems.
    Johnston MD; Pantea C; Donnell P
    J Math Biol; 2016 Jan; 72(1-2):467-98. PubMed ID: 25986743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphical requirements for multistationarity in reaction networks and their verification in BioModels.
    Baudier A; Fages F; Soliman S
    J Theor Biol; 2018 Dec; 459():79-89. PubMed ID: 30267790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monostationarity and Multistationarity in Tree Networks of Goldbeter-Koshland Loops.
    Barabanschikov A; Gunawardena J
    Bull Math Biol; 2019 Jul; 81(7):2463-2509. PubMed ID: 31218553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joining and decomposing reaction networks.
    Gross E; Harrington H; Meshkat N; Shiu A
    J Math Biol; 2020 May; 80(6):1683-1731. PubMed ID: 32123964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multistationarity in Structured Reaction Networks.
    Dickenstein A; Millán MP; Shiu A; Tang X
    Bull Math Biol; 2019 May; 81(5):1527-1581. PubMed ID: 30788691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multistationarity questions in reduced versus extended biochemical networks.
    Dickenstein A; Giaroli M; Pérez Millán M; Rischter R
    J Math Biol; 2024 Jun; 89(2):18. PubMed ID: 38914780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Multistationarity Structure of Networks with Intermediates and a Binomial Core Network.
    Sadeghimanesh A; Feliu E
    Bull Math Biol; 2019 Jul; 81(7):2428-2462. PubMed ID: 31102135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multistationarity in the Space of Total Concentrations for Systems that Admit a Monomial Parametrization.
    Conradi C; Iosif A; Kahle T
    Bull Math Biol; 2019 Oct; 81(10):4174-4209. PubMed ID: 31332598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finding MEMo: minimum sets of elementary flux modes.
    Röhl A; Bockmayr A
    J Math Biol; 2019 Oct; 79(5):1749-1777. PubMed ID: 31388689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation of elementary modes: a unifying framework and the new binary approach.
    Gagneur J; Klamt S
    BMC Bioinformatics; 2004 Nov; 5():175. PubMed ID: 15527509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalizing Gillespie's Direct Method to Enable Network-Free Simulations.
    Suderman R; Mitra ED; Lin YT; Erickson KE; Feng S; Hlavacek WS
    Bull Math Biol; 2019 Aug; 81(8):2822-2848. PubMed ID: 29594824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifiability from a Few Species for a Class of Biochemical Reaction Networks.
    Jeronimo G; Pérez Millán M; Solernó P
    Bull Math Biol; 2019 Jul; 81(7):2133-2175. PubMed ID: 30945101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions.
    Kügler P; Yang W
    J Math Biol; 2014 Jun; 68(7):1757-83. PubMed ID: 23708492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks.
    Ali Al-Radhawi M; Angeli D; Sontag ED
    PLoS Comput Biol; 2020 Feb; 16(2):e1007681. PubMed ID: 32092050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.