These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30790228)

  • 41. Heuristics for chemical compound matching.
    Hattori M; Okuno Y; Goto S; Kanehisa M
    Genome Inform; 2003; 14():144-53. PubMed ID: 15706529
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation.
    Wang Z; Huang D; Meng H; Tang C
    Biosystems; 2013 Oct; 114(1):1-7. PubMed ID: 23871964
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Counting motifs in dynamic networks.
    Mukherjee K; Hasan MM; Boucher C; Kahveci T
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):6. PubMed ID: 29671392
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient extraction of mapping rules of atoms from enzymatic reaction data.
    Akutsu T
    J Comput Biol; 2004; 11(2-3):449-62. PubMed ID: 15285901
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A fast and exact algorithm for the median of three problem: a graph decomposition approach.
    Xu AW
    J Comput Biol; 2009 Oct; 16(10):1369-81. PubMed ID: 19747038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Searching for pharmacophoric patterns in databases of three-dimensional chemical structures.
    Willett P
    J Mol Recognit; 1995; 8(5):290-303. PubMed ID: 8619950
    [TBL] [Abstract][Full Text] [Related]  

  • 47. k-Partite cliques of protein interactions: A novel subgraph topology for functional coherence analysis on PPI networks.
    Liu Q; Chen YP; Li J
    J Theor Biol; 2014 Jan; 340():146-54. PubMed ID: 24056214
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Representation and searching of carbohydrate structures using graph-theoretic techniques.
    Bruno IJ; Kemp NM; Artymiuk PJ; Willett P
    Carbohydr Res; 1997 Oct; 304(1):61-7. PubMed ID: 9403995
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm.
    Grindley HM; Artymiuk PJ; Rice DW; Willett P
    J Mol Biol; 1993 Feb; 229(3):707-21. PubMed ID: 8381875
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dissecting molecular network structures using a network subgraph approach.
    Huang CH; Zaenudin E; Tsai JJP; Kurubanjerdjit N; Dessie EY; Ng KL
    PeerJ; 2020; 8():e9556. PubMed ID: 33005483
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mining coherent dense subgraphs across massive biological networks for functional discovery.
    Hu H; Yan X; Huang Y; Han J; Zhou XJ
    Bioinformatics; 2005 Jun; 21 Suppl 1():i213-21. PubMed ID: 15961460
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimizing graph-based patterns to extract biomedical events from the literature.
    Liu H; Verspoor K; Comeau DC; MacKinlay AD; Wilbur W
    BMC Bioinformatics; 2015; 16 Suppl 16(Suppl 16):S2. PubMed ID: 26551594
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the Hardness of Sequence Alignment on De Bruijn Graphs.
    Gibney D; Thankachan SV; Aluru S
    J Comput Biol; 2022 Dec; 29(12):1377-1396. PubMed ID: 36450127
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Object recognition through topo-geometric shape models using error-tolerant subgraph isomorphisms.
    Baloch S; Krim H
    IEEE Trans Image Process; 2010 May; 19(5):1191-200. PubMed ID: 20040418
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Discovering interesting molecular substructures for molecular classification.
    Lam WW; Chan KC
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):77-89. PubMed ID: 20650702
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mining subgraph coverage patterns from graph transactions.
    Reddy AS; Reddy PK; Mondal A; Priyakumar UD
    Int J Data Sci Anal; 2022; 13(2):105-121. PubMed ID: 34873579
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detecting list-colored graph motifs in biological networks using branch-and-bound strategy.
    Huang Y; Zhong C
    Comput Biol Med; 2019 Apr; 107():1-9. PubMed ID: 30738296
    [TBL] [Abstract][Full Text] [Related]  

  • 58. BioGraphE: high-performance bionetwork analysis using the Biological Graph Environment.
    Chin G; Chavarria DG; Nakamura GC; Sofia HJ
    BMC Bioinformatics; 2008 May; 9 Suppl 6(Suppl 6):S6. PubMed ID: 18541059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modification and completion of geological structure knowledge graph based on pattern matching.
    Lu C; Xu X; Zhang B
    Sci Rep; 2024 Apr; 14(1):9825. PubMed ID: 38684846
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Error Tree: A Tree Structure for Hamming and Edit Distances and Wildcards Matching.
    Al-Okaily A
    J Comput Biol; 2015 Dec; 22(12):1118-28. PubMed ID: 26402070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.