These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 30790265)

  • 1. Setting Up All-Atom Molecular Dynamics Simulations to Study the Interactions of Peripheral Membrane Proteins with Model Lipid Bilayers.
    Monje-Galvan V; Warburton L; Klauda JB
    Methods Mol Biol; 2019; 1949():325-339. PubMed ID: 30790265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics Simulations Are Redefining Our View of Peptides Interacting with Biological Membranes.
    Ulmschneider JP; Ulmschneider MB
    Acc Chem Res; 2018 May; 51(5):1106-1116. PubMed ID: 29667836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the membrane binding mechanism of a lipid transport protein Osh4 to single membranes.
    Karmakar S; Klauda JB
    Biophys J; 2022 Apr; 121(8):1560-1575. PubMed ID: 35247338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Membrane Lipid Packing on Stable Binding of the ALPS Peptide.
    Wildermuth KD; Monje-Galvan V; Warburton LM; Klauda JB
    J Chem Theory Comput; 2019 Feb; 15(2):1418-1429. PubMed ID: 30633866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics Simulation and Analysis of the Antimicrobial Peptide-Lipid Bilayer Interactions.
    Arasteh S; Bagheri M
    Methods Mol Biol; 2017; 1548():103-118. PubMed ID: 28013500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of alpha-helices with lipid bilayers: a review of simulation studies.
    Biggin PC; Sansom MS
    Biophys Chem; 1999 Feb; 76(3):161-83. PubMed ID: 10074693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferred Binding Mechanism of Osh4's Amphipathic Lipid-Packing Sensor Motif, Insights from Molecular Dynamics.
    Monje-Galvan V; Klauda JB
    J Phys Chem B; 2018 Oct; 122(42):9713-9723. PubMed ID: 30281310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation studies of the interaction of antimicrobial peptides and lipid bilayers.
    La Rocca P; Biggin PC; Tieleman DP; Sansom MS
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):185-200. PubMed ID: 10590308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into the interactions, residue snorkeling, and membrane disordering potency of a single antimicrobial peptide into different lipid bilayers.
    Jafari M; Mehrnejad F; Doustdar F
    PLoS One; 2017; 12(11):e0187216. PubMed ID: 29125878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model.
    Ohkubo YZ; Pogorelov TV; Arcario MJ; Christensen GA; Tajkhorshid E
    Biophys J; 2012 May; 102(9):2130-9. PubMed ID: 22824277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular-Level "Observations" of the Behavior of Gold Nanoparticles in Aqueous Solution and Interacting with a Lipid Bilayer Membrane.
    Oroskar PA; Jameson CJ; Murad S
    Methods Mol Biol; 2019; 2000():303-359. PubMed ID: 31148024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding, folding and insertion of a β-hairpin peptide at a lipid bilayer surface: Influence of electrostatics and lipid tail packing.
    Reid KA; Davis CM; Dyer RB; Kindt JT
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):792-800. PubMed ID: 29291379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripheral membrane proteins: Tying the knot between experiment and computation.
    Monje-Galvan V; Klauda JB
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt B):1584-93. PubMed ID: 26903211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-level description of protein-lipid interactions using an accelerated membrane model.
    Baylon JL; Vermaas JV; Muller MP; Arcario MJ; Pogorelov TV; Tajkhorshid E
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt B):1573-83. PubMed ID: 26940626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular simulations of antimicrobial peptides.
    Langham A; Kaznessis YN
    Methods Mol Biol; 2010; 618():267-85. PubMed ID: 20094870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient molecular mechanics simulations of the folding, orientation, and assembly of peptides in lipid bilayers using an implicit atomic solvation model.
    Bordner AJ; Zorman B; Abagyan R
    J Comput Aided Mol Des; 2011 Oct; 25(10):895-911. PubMed ID: 21904908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Design of Membrane Curvature-Sensing Peptides.
    de Jesus AJ; Yin H
    Methods Mol Biol; 2017; 1529():417-437. PubMed ID: 27914065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms.
    Mori T; Miyashita N; Im W; Feig M; Sugita Y
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt B):1635-51. PubMed ID: 26766517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.