BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 30790407)

  • 1. Perovskite Oxide Based Electrodes for High-Performance Photoelectrochemical Water Splitting.
    Wang W; Xu M; Xu X; Zhou W; Shao Z
    Angew Chem Int Ed Engl; 2020 Jan; 59(1):136-152. PubMed ID: 30790407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Computation and Experiment to Investigate Photoelectrodes for Solar Water Splitting at the Microscopic Scale.
    Wang W; Radmilovic A; Choi KS; Galli G
    Acc Chem Res; 2021 Oct; 54(20):3863-3872. PubMed ID: 34619961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organometal Halide Perovskite-Based Photoelectrochemical Module Systems for Scalable Unassisted Solar Water Splitting.
    Choi H; Seo S; Yoon CJ; Ahn JB; Kim CS; Jung Y; Kim Y; Toma FM; Kim H; Lee S
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303106. PubMed ID: 37752753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review.
    Li D; Shi J; Li C
    Small; 2018 Jun; 14(23):e1704179. PubMed ID: 29575653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoelectrochemical Water Splitting Reaction System Based on Metal-Organic Halide Perovskites.
    Kim D; Lee DK; Kim SM; Park W; Sim U
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoelectrochemical Water-Splitting Using CuO-Based Electrodes for Hydrogen Production: A Review.
    Siavash Moakhar R; Hosseini-Hosseinabad SM; Masudy-Panah S; Seza A; Jalali M; Fallah-Arani H; Dabir F; Gholipour S; Abdi Y; Bagheri-Hariri M; Riahi-Noori N; Lim YF; Hagfeldt A; Saliba M
    Adv Mater; 2021 Aug; 33(33):e2007285. PubMed ID: 34117806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting.
    Qiu Y; Pan Z; Chen H; Ye D; Guo L; Fan Z; Yang S
    Sci Bull (Beijing); 2019 Sep; 64(18):1348-1380. PubMed ID: 36659664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting.
    Gurudayal ; Sabba D; Kumar MH; Wong LH; Barber J; Grätzel M; Mathews N
    Nano Lett; 2015 Jun; 15(6):3833-9. PubMed ID: 25942281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible-Light-Responsive Photoanodes for Highly Active, Stable Water Oxidation.
    Seo J; Nishiyama H; Yamada T; Domen K
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8396-8415. PubMed ID: 29265720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight.
    Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS
    ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells.
    Qiu Y; Liu W; Chen W; Chen W; Zhou G; Hsu PC; Zhang R; Liang Z; Fan S; Zhang Y; Cui Y
    Sci Adv; 2016 Jun; 2(6):e1501764. PubMed ID: 27386565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.
    Zhang D; Shi J; Zi W; Wang P; Liu SF
    ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated thermoelectric-assisted photoelectrochemical system to boost water splitting.
    Kang Y; Chen R; Zhen C; Wang L; Liu G; Cheng HM
    Sci Bull (Beijing); 2020 Jul; 65(14):1163-1169. PubMed ID: 36659145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon based photoelectrodes for photoelectrochemical water splitting.
    Fan R; Mi Z; Shen M
    Opt Express; 2019 Feb; 27(4):A51-A80. PubMed ID: 30876004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges.
    Tamirat AG; Rick J; Dubale AA; Su WN; Hwang BJ
    Nanoscale Horiz; 2016 Jul; 1(4):243-267. PubMed ID: 32260645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layered Double Hydroxide onto Perovskite Oxide-Decorated ZnO Nanorods for Modulation of Carrier Transfer Behavior in Photoelectrochemical Water Oxidation.
    Long X; Wang C; Wei S; Wang T; Jin J; Ma J
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2452-2459. PubMed ID: 31845790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and Compositional Investigations on the Stability of Cuprous Oxide Nanowire Photocathodes for Photoelectrochemical Water Splitting.
    Son MK; Pan L; Mayer MT; Hagfeldt A; Grätzel M; Luo J
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55080-55091. PubMed ID: 34761678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-insulator-semiconductor photoelectrodes for enhanced photoelectrochemical water splitting.
    Wei S; Xia X; Bi S; Hu S; Wu X; Hsu HY; Zou X; Huang K; Zhang DW; Sun Q; Bard AJ; Yu ET; Ji L
    Chem Soc Rev; 2024 Jul; 53(13):6860-6916. PubMed ID: 38833171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.