These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 307914)

  • 1. Energy coupling to sodium transport in frog skeletal muscle.
    Connett RJ; Hays ET
    Am J Physiol; 1978 Jul; 235(1):C25-34. PubMed ID: 307914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strophanthidin-sensitive sodium fluxes in metabolically poisoned frog skeletal muscle.
    Kennedy BG; De Weer P
    J Gen Physiol; 1976 Oct; 68(4):405-20. PubMed ID: 1086888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consumption of high-energy phosphates during active sodium and potassium interchange in frog muscle.
    Dydynska M; Harris EJ
    J Physiol; 1966 Jan; 182(1):92-109. PubMed ID: 5937418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractionation of sodium effux in frog sartorius muscles by strophanthidin and removal of external sodium.
    Horowicz P; Taylor JW; Waggoner DM
    J Gen Physiol; 1970 Mar; 55(3):401-25. PubMed ID: 5315424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic cooperative control of electrolyte levels by adenosine triphosphate in the frog muscle.
    Gulati J; Ochesenfeld MM; Ling GN
    Biophys J; 1971 Dec; 11(12):973-80. PubMed ID: 5316285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strophanthidin-sensitive transport of cesium and sodium in muscle cells.
    Sjodin RA; Beaugé LA
    Science; 1967 Jun; 156(3779):1248-50. PubMed ID: 6025547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theophylline action on sodium fluxes in frog striated muscle.
    Hays ET; Horowicz P; Swift JG
    J Pharmacol Exp Ther; 1977 Aug; 202(2):388-96. PubMed ID: 301931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stoicheiometry of sodium ion movement from frog muscle.
    Harris EJ
    J Physiol; 1967 Nov; 193(2):455-8. PubMed ID: 6065890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strophanthidin-sensitive components of potassium and sodium movements in skeletal muscle as influenced by the internal sodium concentration.
    Sjodin RA; Beaugé LA
    J Gen Physiol; 1968 Sep; 52(3):389-407. PubMed ID: 5673300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epinephrine action on sodium fluxes in frog striated muscle.
    Hays ET; Dwyer TM; Horowicz P; Swift JG
    Am J Physiol; 1974 Dec; 227(6):1340-7. PubMed ID: 4548312
    [No Abstract]   [Full Text] [Related]  

  • 11. The effects of ethacrynic acid and other sulphydryl reagents on sodium fluxes in frog muscle.
    Erlij D; Leblanc G
    J Physiol; 1971 Apr; 214(2):327-47. PubMed ID: 5579640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of relaxation in frog muscle.
    Curtin NA; Woledge RC
    J Physiol; 1974 Apr; 238(2):437-46. PubMed ID: 4546216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inward movement of sodium ions in resting and stimulated frog's sartorius muscle.
    Venosa RA
    J Physiol; 1974 Aug; 241(1):155-73. PubMed ID: 4547580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dual effect of lithium ions on sodium efflux in skeletal muscle.
    Beaugé LA; Sjodin RA
    J Gen Physiol; 1968 Sep; 52(3):408-23. PubMed ID: 5673301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interactions of potassium, sodium and strophanthidin during active transport of sodium ions in frog muscle cells.
    Wu SC; Sjodin RA
    Biochim Biophys Acta; 1972 Dec; 290(1):327-38. PubMed ID: 4264472
    [No Abstract]   [Full Text] [Related]  

  • 16. Temporal correlation between initial increase in active outward Na transport and energy metabolism in the canine carotid artery during metabolic poisoning by monoiodoacetate.
    Siegel G; Schott A; Koepchen HP
    Pflugers Arch; 1969; 312(1):R48-9. PubMed ID: 5390258
    [No Abstract]   [Full Text] [Related]  

  • 17. [Effect of elevated H+ concentration in the media on the concentration of high energy phosphates and the membrane potential of the isolated frog's skeletal muscle].
    Elze P; Sinz V; Küchler G
    Acta Biol Med Ger; 1967; 19(2):297-309. PubMed ID: 5591567
    [No Abstract]   [Full Text] [Related]  

  • 18. Retrograde axonal transport of proteins in vitro in frog sciatic nerves.
    Edström A; Hanson M
    Brain Res; 1973 Oct; 61():311-20. PubMed ID: 4129707
    [No Abstract]   [Full Text] [Related]  

  • 19. Ryanodine and theophylline-induced depletion of energy stores in amphibian muscle.
    Hays ET; Sanchez K; Verrier C
    Biochem Pharmacol; 1994 Apr; 47(9):1683-91. PubMed ID: 8185684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-energy phosphate resynthesis from anaerobic glycolysis in frog gastrocnemius muscle.
    Cerretelli P; Di Prampero PE; Ambrosoli G
    Am J Physiol; 1972 Apr; 222(4):1021-6. PubMed ID: 4537281
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.