These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Binary Green Blends of Poly(lactic acid) with Poly(butylene adipate- Coiai S; Di Lorenzo ML; Cinelli P; Righetti MC; Passaglia E Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372090 [TBL] [Abstract][Full Text] [Related]
4. Toughening of biodegradable polylactide/poly(butylene succinate-co-adipate) blends via in situ reactive compatibilization. Ojijo V; Ray SS; Sadiku R ACS Appl Mater Interfaces; 2013 May; 5(10):4266-76. PubMed ID: 23627363 [TBL] [Abstract][Full Text] [Related]
5. Miscibility, Morphology and Crystallization Behavior of Poly(Butylene Succinate-co-Butylene Adipate)/Poly(Vinyl Phenol)/Poly(l-Lactic Acid) Blends. Si P; Luo F; Luo F Polymers (Basel); 2016 Dec; 8(12):. PubMed ID: 30974697 [TBL] [Abstract][Full Text] [Related]
6. Poly(lactide)-g-poly(butylene succinate-co-adipate) with High Crystallization Capacity and Migration Resistance. Yang X; Xu H; Odelius K; Hakkarainen M Materials (Basel); 2016 Apr; 9(5):. PubMed ID: 28773437 [TBL] [Abstract][Full Text] [Related]
7. Development of Toughened Flax Fiber Reinforced Composites. Modification of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends by Reactive Extrusion Process. Andrzejewski J; Nowakowski M Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33804651 [TBL] [Abstract][Full Text] [Related]
8. Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-co-adipate]. Ojijo V; Sinha Ray S; Sadiku R ACS Appl Mater Interfaces; 2012 Dec; 4(12):6690-701. PubMed ID: 23148691 [TBL] [Abstract][Full Text] [Related]
9. Ductile poly(lactic acid)-based blends derived from poly(butylene succinate-co-butylene 2,5-thiophenedicarboxylate): Structures and properties. Wang G; Zhang L; Chi X Int J Biol Macromol; 2023 Apr; 234():123702. PubMed ID: 36801293 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the Physical and Shape Memory Properties of Fully Biodegradable Poly(lactic acid) (PLA)/Poly(butylene adipate terephthalate) (PBAT) Blends. Bianchi M; Dorigato A; Morreale M; Pegoretti A Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850164 [TBL] [Abstract][Full Text] [Related]
12. Role of Maleic Anhydride-Grafted Poly(lactic acid) in Improving Shape Memory Properties of Thermoresponsive Poly(ethylene glycol) and Poly(lactic acid) Blends. Nonkrathok W; Trongsatitkul T; Suppakarn N Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146067 [TBL] [Abstract][Full Text] [Related]
13. Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly[(butylene succinate)-co-adipate] blend composites. Ojijo V; Sinha Ray S; Sadiku R ACS Appl Mater Interfaces; 2012 May; 4(5):2395-405. PubMed ID: 22496491 [TBL] [Abstract][Full Text] [Related]
14. Investigation of Thermal and Thermomechanical Properties of Biodegradable PLA/PBSA Composites Processed via Supercritical Fluid-Assisted Foam Injection Molding. Pradeep SA; Kharbas H; Turng LS; Avalos A; Lawrence JG; Pilla S Polymers (Basel); 2017 Jan; 9(1):. PubMed ID: 30970698 [TBL] [Abstract][Full Text] [Related]
15. Structure and Barrier Properties of Multinanolayered Biodegradable PLA/PBSA Films: Confinement Effect via Forced Assembly Coextrusion. Messin T; Follain N; Guinault A; Sollogoub C; Gaucher V; Delpouve N; Marais S ACS Appl Mater Interfaces; 2017 Aug; 9(34):29101-29112. PubMed ID: 28758727 [TBL] [Abstract][Full Text] [Related]
16. Manufacturing and Characterization of Toughened Poly(lactic acid) (PLA) Formulations by Ternary Blends with Biopolyesters. García-Campo MJ; Boronat T; Quiles-Carrillo L; Balart R; Montanes N Polymers (Basel); 2017 Dec; 10(1):. PubMed ID: 30966040 [TBL] [Abstract][Full Text] [Related]
17. Various crystalline morphology of poly(butylene succinate-co-butylene adipate) in its miscible blends with poly(vinylidene fluoride). Qiu Z; Yan C; Lu J; Yang W; Ikehara T; Nishi T J Phys Chem B; 2007 Mar; 111(11):2783-9. PubMed ID: 17388429 [TBL] [Abstract][Full Text] [Related]
18. Biodegradable blends from bacterial biopolyester PHBV and bio-based PBSA: Study of the effect of chain extender on the thermal, mechanical and morphological properties. Feijoo P; Mohanty AK; Rodriguez-Uribe A; Gámez-Pérez J; Cabedo L; Misra M Int J Biol Macromol; 2023 Jan; 225():1291-1305. PubMed ID: 36423810 [TBL] [Abstract][Full Text] [Related]
19. Influence of Nanoparticle Pretreatment on the Thermal, Rheological and Mechanical Properties of PLA-PBSA Nanocomposites Incorporating Cellulose Nanocrystals or Montmorillonite. Abdallah W; Mirzadeh A; Tan V; Kamal MR Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30587837 [TBL] [Abstract][Full Text] [Related]
20. A Green Treatment Mitigates the Limitations of Coffee Silver Skin as a Filler for PLA/PBSA Compatibilized Biocomposites. Perin D; Dorigato A; Bertoldi E; Fambri L; Fredi G Molecules; 2023 Dec; 29(1):. PubMed ID: 38202809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]