BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 30791569)

  • 21. How stem cells manage to escape senescence and ageing - while they can: A recent study reveals that autophagy is responsible for senescence-dependent loss of regenerative potential of muscle stem cells during ageing.
    Ricchetti M
    Bioessays; 2016 Sep; 38(9):857-62. PubMed ID: 27389857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscle stem cells in development, regeneration, and disease.
    Shi X; Garry DJ
    Genes Dev; 2006 Jul; 20(13):1692-708. PubMed ID: 16818602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Muscle stem cell aging: regulation and rejuvenation.
    Sousa-Victor P; García-Prat L; Serrano AL; Perdiguero E; Muñoz-Cánoves P
    Trends Endocrinol Metab; 2015 Jun; 26(6):287-96. PubMed ID: 25869211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-cell transcriptomic analysis of skeletal muscle regeneration across mouse lifespan identifies altered stem cell states associated with senescence.
    Walter LD; Orton JL; Hannah Fong EH; Maymi VI; Rudd BD; Elisseeff JH; Cosgrove BD
    bioRxiv; 2023 May; ():. PubMed ID: 37292698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche?
    Perandini LA; Chimin P; Lutkemeyer DDS; Câmara NOS
    FEBS J; 2018 Jun; 285(11):1973-1984. PubMed ID: 29473995
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New mechanisms driving muscle stem cell regenerative decline with aging.
    Sousa-Victor P; García-Prat L; Muñoz-Cánoves P
    Int J Dev Biol; 2018; 62(6-7-8):583-590. PubMed ID: 29938769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of Platelet-Rich and Platelet-Poor Plasma on Endogenous Mechanisms of Skeletal Muscle Repair/Regeneration.
    Chellini F; Tani A; Zecchi-Orlandini S; Sassoli C
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30764506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Healthy skeletal muscle aging: The role of satellite cells, somatic mutations and exercise.
    Franco I; Fernandez-Gonzalo R; Vrtačnik P; Lundberg TR; Eriksson M; Gustafsson T
    Int Rev Cell Mol Biol; 2019; 346():157-200. PubMed ID: 31122394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methods for Mitochondria and Mitophagy Flux Analyses in Stem Cells of Resting and Regenerating Skeletal Muscle.
    García-Prat L; Martínez-Vicente M; Muñoz-Cánoves P
    Methods Mol Biol; 2016; 1460():223-40. PubMed ID: 27492176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications.
    Ciciliot S; Schiaffino S
    Curr Pharm Des; 2010; 16(8):906-14. PubMed ID: 20041823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Satellite cells: the architects of skeletal muscle.
    Chang NC; Rudnicki MA
    Curr Top Dev Biol; 2014; 107():161-81. PubMed ID: 24439806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Macrophage Involvement in Aging-Associated Skeletal Muscle Regeneration.
    Cui CY; Ferrucci L; Gorospe M
    Cells; 2023 Apr; 12(9):. PubMed ID: 37174614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prevention of muscle aging by myofiber-associated satellite cell transplantation.
    Hall JK; Banks GB; Chamberlain JS; Olwin BB
    Sci Transl Med; 2010 Nov; 2(57):57ra83. PubMed ID: 21068442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration.
    Paris ND; Soroka A; Klose A; Liu W; Chakkalakal JV
    Elife; 2016 Nov; 5():. PubMed ID: 27855784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular Biomechanics in Skeletal Muscle Regeneration.
    Li EW; McKee-Muir OC; Gilbert PM
    Curr Top Dev Biol; 2018; 126():125-176. PubMed ID: 29304997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pro-Insulin-Like Growth Factor-II Ameliorates Age-Related Inefficient Regenerative Response by Orchestrating Self-Reinforcement Mechanism of Muscle Regeneration.
    Ikemoto-Uezumi M; Uezumi A; Tsuchida K; Fukada S; Yamamoto H; Yamamoto N; Shiomi K; Hashimoto N
    Stem Cells; 2015 Aug; 33(8):2456-68. PubMed ID: 25917344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization.
    Joanisse S; Nederveen JP; Snijders T; McKay BR; Parise G
    Gerontology; 2017; 63(1):91-100. PubMed ID: 27760421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stem cell review series: aging of the skeletal muscle stem cell niche.
    Gopinath SD; Rando TA
    Aging Cell; 2008 Aug; 7(4):590-8. PubMed ID: 18462272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aging of the immune system and impaired muscle regeneration: A failure of immunomodulation of adult myogenesis.
    Tidball JG; Flores I; Welc SS; Wehling-Henricks M; Ochi E
    Exp Gerontol; 2021 Mar; 145():111200. PubMed ID: 33359378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease.
    Almada AE; Wagers AJ
    Nat Rev Mol Cell Biol; 2016 May; 17(5):267-79. PubMed ID: 26956195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.