BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 30791648)

  • 1. Deep Learning for Sensor-Based Rehabilitation Exercise Recognition and Evaluation.
    Zhu ZA; Lu YC; You CH; Chiang CK
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition.
    Avilés-Cruz C; Ferreyra-Ramírez A; Zúñiga-López A; Villegas-Cortéz J
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Deep Learning Framework for Assessing Physical Rehabilitation Exercises.
    Liao Y; Vakanski A; Xian M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):468-477. PubMed ID: 31940544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel deep learning approach for classification of EEG motor imagery signals.
    Tabar YR; Halici U
    J Neural Eng; 2017 Feb; 14(1):016003. PubMed ID: 27900952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding of finger trajectory from ECoG using deep learning.
    Xie Z; Schwartz O; Prasad A
    J Neural Eng; 2018 Jun; 15(3):036009. PubMed ID: 29182152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing automated lower limb rehabilitation exercise task recognition through multi-sensor data fusion in tele-rehabilitation.
    Ettefagh A; Roshan Fekr A
    Biomed Eng Online; 2024 Mar; 23(1):35. PubMed ID: 38504279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNN-Siam: multimodal siamese CNN-based deep learning approach for drug‒drug interaction prediction.
    Yang Z; Tong K; Jin S; Wang S; Yang C; Jiang F
    BMC Bioinformatics; 2023 Mar; 24(1):110. PubMed ID: 36959539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain MRI analysis using a deep learning based evolutionary approach.
    Shahamat H; Saniee Abadeh M
    Neural Netw; 2020 Jun; 126():218-234. PubMed ID: 32259762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bi-stream CNN Down Syndrome screening model based on genotyping array.
    Feng B; Hoskins W; Zhang Y; Meng Z; Samuels DC; Wang J; Xia R; Liu C; Tang J; Guo Y
    BMC Med Genomics; 2018 Nov; 11(Suppl 5):105. PubMed ID: 30453947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition and Repetition Counting for Local Muscular Endurance Exercises in Exercise-Based Rehabilitation: A Comparative Study Using Artificial Intelligence Models.
    Prabhu G; O'Connor NE; Moran K
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32854288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones.
    Ankita ; Rani S; Babbar H; Coleman S; Singh A; Aljahdali HM
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text.
    Zhu Q; Li X; Conesa A; Pereira C
    Bioinformatics; 2018 May; 34(9):1547-1554. PubMed ID: 29272325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.
    Yang X; Liu C; Wang Z; Yang J; Min HL; Wang L; Cheng KT
    Med Image Anal; 2017 Dec; 42():212-227. PubMed ID: 28850876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced convolutional neural network for plankton identification and enumeration.
    Cheng K; Cheng X; Wang Y; Bi H; Benfield MC
    PLoS One; 2019; 14(7):e0219570. PubMed ID: 31291356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG Classification of Motor Imagery Using a Novel Deep Learning Framework.
    Dai M; Zheng D; Na R; Wang S; Zhang S
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30699946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taxonomy of multi-focal nematode image stacks by a CNN based image fusion approach.
    Liu M; Wang X; Zhang H
    Comput Methods Programs Biomed; 2018 Mar; 156():209-215. PubMed ID: 29428072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iss2Image: A Novel Signal-Encoding Technique for CNN-Based Human Activity Recognition.
    Hur T; Bang J; Huynh-The T; Lee J; Kim JI; Lee S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30428600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical Named Entity Recognition Using Deep Learning Models.
    Wu Y; Jiang M; Xu J; Zhi D; Xu H
    AMIA Annu Symp Proc; 2017; 2017():1812-1819. PubMed ID: 29854252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CNN-SVM combined model for pattern recognition of knee motion using mechanomyography signals.
    Wu H; Huang Q; Wang D; Gao L
    J Electromyogr Kinesiol; 2018 Oct; 42():136-142. PubMed ID: 30077088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.