These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 30792011)
1. Comparing clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: A pilot usability study. Brennan M; Puri S; Ozrazgat-Baslanti T; Feng Z; Ruppert M; Hashemighouchani H; Momcilovic P; Li X; Wang DZ; Bihorac A Surgery; 2019 May; 165(5):1035-1045. PubMed ID: 30792011 [TBL] [Abstract][Full Text] [Related]
2. MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery. Bihorac A; Ozrazgat-Baslanti T; Ebadi A; Motaei A; Madkour M; Pardalos PM; Lipori G; Hogan WR; Efron PA; Moore F; Moldawer LL; Wang DZ; Hobson CE; Rashidi P; Li X; Momcilovic P Ann Surg; 2019 Apr; 269(4):652-662. PubMed ID: 29489489 [TBL] [Abstract][Full Text] [Related]
3. Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform. Ren Y; Loftus TJ; Datta S; Ruppert MM; Guan Z; Miao S; Shickel B; Feng Z; Giordano C; Upchurch GR; Rashidi P; Ozrazgat-Baslanti T; Bihorac A JAMA Netw Open; 2022 May; 5(5):e2211973. PubMed ID: 35576007 [TBL] [Abstract][Full Text] [Related]
4. Optimizing predictive strategies for acute kidney injury after major vascular surgery. Filiberto AC; Ozrazgat-Baslanti T; Loftus TJ; Peng YC; Datta S; Efron P; Upchurch GR; Bihorac A; Cooper MA Surgery; 2021 Jul; 170(1):298-303. PubMed ID: 33648766 [TBL] [Abstract][Full Text] [Related]
5. Added Value of Intraoperative Data for Predicting Postoperative Complications: The MySurgeryRisk PostOp Extension. Datta S; Loftus TJ; Ruppert MM; Giordano C; Upchurch GR; Rashidi P; Ozrazgat-Baslanti T; Bihorac A J Surg Res; 2020 Oct; 254():350-363. PubMed ID: 32531520 [TBL] [Abstract][Full Text] [Related]
6. Machine learning versus physicians' prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKIpredictor. Flechet M; Falini S; Bonetti C; Güiza F; Schetz M; Van den Berghe G; Meyfroidt G Crit Care; 2019 Aug; 23(1):282. PubMed ID: 31420056 [TBL] [Abstract][Full Text] [Related]
7. Developing and validating subjective and objective risk-assessment measures for predicting mortality after major surgery: An international prospective cohort study. Wong DJN; Harris S; Sahni A; Bedford JR; Cortes L; Shawyer R; Wilson AM; Lindsay HA; Campbell D; Popham S; Barneto LM; Myles PS; ; Moonesinghe SR PLoS Med; 2020 Oct; 17(10):e1003253. PubMed ID: 33057333 [TBL] [Abstract][Full Text] [Related]
8. Cognitive Machine-Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy. Sengupta PP; Huang YM; Bansal M; Ashrafi A; Fisher M; Shameer K; Gall W; Dudley JT Circ Cardiovasc Imaging; 2016 Jun; 9(6):. PubMed ID: 27266599 [TBL] [Abstract][Full Text] [Related]
9. Risk prediction of delirium in hospitalized patients using machine learning: An implementation and prospective evaluation study. Jauk S; Kramer D; Großauer B; Rienmüller S; Avian A; Berghold A; Leodolter W; Schulz S J Am Med Inform Assoc; 2020 Jul; 27(9):1383-1392. PubMed ID: 32968811 [TBL] [Abstract][Full Text] [Related]
10. Eye of the beholder: Risk calculators and barriers to adoption in surgical trainees. Leeds IL; Rosenblum AJ; Wise PE; Watkins AC; Goldblatt MI; Haut ER; Efron JE; Johnston FM Surgery; 2018 Nov; 164(5):1117-1123. PubMed ID: 30149939 [TBL] [Abstract][Full Text] [Related]
11. Mortality predictions in the intensive care unit: comparing physicians with scoring systems. Sinuff T; Adhikari NK; Cook DJ; Schünemann HJ; Griffith LE; Rocker G; Walter SD Crit Care Med; 2006 Mar; 34(3):878-85. PubMed ID: 16505667 [TBL] [Abstract][Full Text] [Related]
12. Prospectively Assigned AAST Grade versus Modified Hinchey Class and Acute Diverticulitis Outcomes. Choi J; Bessoff K; Bromley-Dulfano R; Li Z; Gupta A; Taylor K; Wadhwa H; Seltzer R; Spain DA; Knowlton LM J Surg Res; 2021 Mar; 259():555-561. PubMed ID: 33248670 [TBL] [Abstract][Full Text] [Related]
14. The San Francisco Syncope Rule vs physician judgment and decision making. Quinn JV; Stiell IG; McDermott DA; Kohn MA; Wells GA Am J Emerg Med; 2005 Oct; 23(6):782-6. PubMed ID: 16182988 [TBL] [Abstract][Full Text] [Related]
15. Surgeons' assessment versus risk models for predicting complications of hepato-pancreato-biliary surgery (HPB-RISC): a multicenter prospective cohort study. Samim M; Mungroop TH; AbuHilal M; Isfordink CJ; Molenaar QI; van der Poel MJ; Armstrong TA; Takhar AS; Pearce NW; Primrose JN; Harris S; Verkooijen HM; van Gulik TM; Hagendoorn J; Busch OR; Johnson CD; Besselink MG; HPB (Oxford); 2018 Sep; 20(9):809-814. PubMed ID: 29678364 [TBL] [Abstract][Full Text] [Related]
16. Leveraging electronic health records for predictive modeling of post-surgical complications. Weller GB; Lovely J; Larson DW; Earnshaw BA; Huebner M Stat Methods Med Res; 2018 Nov; 27(11):3271-3285. PubMed ID: 29298612 [TBL] [Abstract][Full Text] [Related]
17. Are Mortality and Acute Morbidity in Patients Presenting With Nonspecific Complaints Predictable Using Routine Variables? Jenny MA; Hertwig R; Ackermann S; Messmer AS; Karakoumis J; Nickel CH; Bingisser R Acad Emerg Med; 2015 Oct; 22(10):1155-63. PubMed ID: 26375290 [TBL] [Abstract][Full Text] [Related]
18. Claims-Based Algorithms for Identifying Patients With Pulmonary Hypertension: A Comparison of Decision Rules and Machine-Learning Approaches. Ong MS; Klann JG; Lin KJ; Maron BA; Murphy SN; Natter MD; Mandl KD J Am Heart Assoc; 2020 Oct; 9(19):e016648. PubMed ID: 32990147 [TBL] [Abstract][Full Text] [Related]
19. Prediction of Allogeneic Hematopoietic Stem-Cell Transplantation Mortality 100 Days After Transplantation Using a Machine Learning Algorithm: A European Group for Blood and Marrow Transplantation Acute Leukemia Working Party Retrospective Data Mining Study. Shouval R; Labopin M; Bondi O; Mishan-Shamay H; Shimoni A; Ciceri F; Esteve J; Giebel S; Gorin NC; Schmid C; Polge E; Aljurf M; Kroger N; Craddock C; Bacigalupo A; Cornelissen JJ; Baron F; Unger R; Nagler A; Mohty M J Clin Oncol; 2015 Oct; 33(28):3144-51. PubMed ID: 26240227 [TBL] [Abstract][Full Text] [Related]
20. Development and pilot feasibility study of a health information technology tool to calculate mortality risk for patients with asymptomatic carotid stenosis: the Carotid Risk Assessment Tool (CARAT). Faerber AE; Horvath R; Stillman C; O'Connell ML; Hamilton AL; Newhall KA; Likosky DS; Goodney PP BMC Med Inform Decis Mak; 2015 Mar; 15():20. PubMed ID: 25890090 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]