These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 3079225)

  • 1. Nematophagous fungi: strategies for nematode exploitation and for survival.
    Nordbring-Hertz B
    Microbiol Sci; 1988 Apr; 5(4):108-16. PubMed ID: 3079225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an extracellular protease and its cDNA from the nematode-trapping fungus Monacrosporium microscaphoides.
    Wang M; Yang J; Zhang KQ
    Can J Microbiol; 2006 Feb; 52(2):130-9. PubMed ID: 16541149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [In vitro predatory activity of 8 fungal isolates against the nematode Panagrellus redivivus].
    Flores Crespo J; Herrera Rodríguez D; Vázquez Prats V; Flores Crespo R; Líebano Hernández E; Mendoza de Gives P
    Rev Latinoam Microbiol; 1999; 41(4):239-44. PubMed ID: 10932764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the nematophagous fungus, Duddingtonia flagrans, on the larval development of goat parasitic nematodes: a plot study.
    Chartier C; Pors I
    Vet Res; 2003; 34(2):221-30. PubMed ID: 12657214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [In vitro nematophagous capacity of Duddingtonia flagrans maintained under 2 conditions of preservation].
    Flores Crespo J; Herrera Rodríguez D; Flores-Crespo R; Liébano Hernández E; Vázquez Prats V; Mendoza de Gives P; Ontiveros Fernández J
    Rev Latinoam Microbiol; 1999; 41(4):245-9. PubMed ID: 10932765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biological control of helminths in grazing animals using nematophagous fungi].
    Hertzberg H; Larsen M; Maurer V
    Berl Munch Tierarztl Wochenschr; 2002; 115(7-8):278-85. PubMed ID: 12174725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects.
    Tian B; Yang J; Zhang KQ
    FEMS Microbiol Ecol; 2007 Aug; 61(2):197-213. PubMed ID: 17651135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.
    Li J; Zou C; Xu J; Ji X; Niu X; Yang J; Huang X; Zhang KQ
    Annu Rev Phytopathol; 2015; 53():67-95. PubMed ID: 25938277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survey of nematophagous fungi in South Africa.
    Durand DT; Boshoff HM; Michael LM; Krecek RC
    Onderstepoort J Vet Res; 2005 Jun; 72(2):185-7. PubMed ID: 16137137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population biology and biological control of nematodes.
    Jaffee BA
    Can J Microbiol; 1992 May; 38(5):359-64. PubMed ID: 1643579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Predacious nematode-destroying fungi].
    Czygier M; Boguś MI
    Wiad Parazytol; 2001; 47(1):25-31. PubMed ID: 16888947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nematophagous fungi as a biological control agent for nematode parasites of small ruminants in Malaysia: a special emphasis on Duddingtonia flagrans.
    Chandrawathani P; Jamnah O; Waller PJ; Höglund J; Larsen M; Zahari WM
    Vet Res; 2002; 33(6):685-96. PubMed ID: 12498569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capability of the nematode-trapping fungus Duddingtonia flagrans to reduce infective larvae of gastrointestinal nematodes in goat feces in the southeastern United States: dose titration and dose time interval studies.
    Terrill TH; Larsen M; Samples O; Husted S; Miller JE; Kaplan RM; Gelaye S
    Vet Parasitol; 2004 Apr; 120(4):285-96. PubMed ID: 15063939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association and predatory capacity of fungi
    Vieira ÍS; Oliveira IC; Campos AK; Araújo JV
    Parasitology; 2019 Sep; 146(10):1347-1351. PubMed ID: 31148530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Occurrence and morphology of some predatory fungi, amoebicidal, rotifericidal and nematodicidal, in the surface waters of Białystok region].
    Kiziewicz B; Czeczuga B
    Wiad Parazytol; 2003; 49(3):281-91. PubMed ID: 16889032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of soy protein polymers as a release device for nematophagous fungi in the control of parasitic nematodes in ruminants.
    Sagüés MF; Purslow P; Fernández AS; Iglesias LE; Fusé LA; Saumell CA
    J Helminthol; 2014 Dec; 88(4):511-4. PubMed ID: 23750613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into vital role of autophagy in sustaining biological control potential of fungal pathogens against pest insects and nematodes.
    Ying SH; Feng MG
    Virulence; 2019 Dec; 10(1):429-437. PubMed ID: 30257619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological control effects of Pochonia chlamysdosporia and Trichoderma isolates from Benin (West-Africa) on root-knot nematodes.
    Kyalo G; Affokpon A; Coosemans J; Coynes DL
    Commun Agric Appl Biol Sci; 2007; 72(1):219-23. PubMed ID: 18018891
    [No Abstract]   [Full Text] [Related]  

  • 19. Signal pathways involved in microbe-nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes.
    Liang LM; Zou CG; Xu J; Zhang KQ
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180317. PubMed ID: 30967028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular enzymes and the pathogenesis of nematophagous fungi.
    Yang J; Tian B; Liang L; Zhang KQ
    Appl Microbiol Biotechnol; 2007 May; 75(1):21-31. PubMed ID: 17318531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.