BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 30792310)

  • 1. K-Ras G-domain binding with signaling lipid phosphatidylinositol (4,5)-phosphate (PIP2): membrane association, protein orientation, and function.
    Cao S; Chung S; Kim S; Li Z; Manor D; Buck M
    J Biol Chem; 2019 Apr; 294(17):7068-7084. PubMed ID: 30792310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.
    Mazhab-Jafari MT; Marshall CB; Smith MJ; Gasmi-Seabrook GM; Stathopulos PB; Inagaki F; Kay LE; Neel BG; Ikura M
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6625-30. PubMed ID: 25941399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PIP2 Influences the Conformational Dynamics of Membrane-Bound KRAS4b.
    McLean MA; Stephen AG; Sligar SG
    Biochemistry; 2019 Aug; 58(33):3537-3545. PubMed ID: 31339036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site.
    Lu S; Banerjee A; Jang H; Zhang J; Gaponenko V; Nussinov R
    J Biol Chem; 2015 Nov; 290(48):28887-900. PubMed ID: 26453300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane-mediated induction and sorting of K-Ras microdomain signaling platforms.
    Weise K; Kapoor S; Denter C; Nikolaus J; Opitz N; Koch S; Triola G; Herrmann A; Waldmann H; Winter R
    J Am Chem Soc; 2011 Feb; 133(4):880-7. PubMed ID: 21141956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region.
    Jang H; Abraham SJ; Chavan TS; Hitchinson B; Khavrutskii L; Tarasova NI; Nussinov R; Gaponenko V
    J Biol Chem; 2015 Apr; 290(15):9465-77. PubMed ID: 25713064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into the mechanism of allosteric activation of PI3Kα by oncoprotein K-Ras4B.
    Li X; Dai J; Ni D; He X; Zhang H; Zhang J; Fu Q; Liu Y; Lu S
    Int J Biol Macromol; 2020 Feb; 144():643-655. PubMed ID: 31816384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation of the Signaling Protein K-Ras4B from Lipid Membranes Induced by a Molecular Tweezer.
    Li L; Erwin N; Möbitz S; Niemeyer F; Schrader T; Winter RHA
    Chemistry; 2019 Jul; 25(42):9827-9833. PubMed ID: 31141233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Modeling Reveals that Signaling Lipids Modulate the Orientation of K-Ras4A at the Membrane Reflecting Protein Topology.
    Li ZL; Buck M
    Structure; 2017 Apr; 25(4):679-689.e2. PubMed ID: 28286004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane Composition and Raf[CRD]-Membrane Attachment Are Driving Forces for K-Ras4B Dimer Stability.
    Andreadelis I; Kiriakidi S; Lamprakis C; Theodoropoulou A; Doerr S; Chatzigoulas A; Manchester J; Velez-Vega C; Duca JS; Cournia Z
    J Phys Chem B; 2022 Feb; 126(7):1504-1519. PubMed ID: 35142524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of KRas4b with anionic membranes: A special role for PIP
    Gregory MC; McLean MA; Sligar SG
    Biochem Biophys Res Commun; 2017 May; 487(2):351-355. PubMed ID: 28412347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hypervariable region of K-Ras4B is responsible for its specific interactions with calmodulin.
    Abraham SJ; Nolet RP; Calvert RJ; Anderson LM; Gaponenko V
    Biochemistry; 2009 Aug; 48(32):7575-83. PubMed ID: 19583261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Hypervariable Region of K-Ras4B Governs Molecular Recognition and Function.
    Abdelkarim H; Banerjee A; Grudzien P; Leschinsky N; Abushaer M; Gaponenko V
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31739603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR in integrated biophysical drug discovery for RAS: past, present, and future.
    Marshall CB; KleinJan F; Gebregiworgis T; Lee KY; Fang Z; Eves BJ; Liu NF; Gasmi-Seabrook GMC; Enomoto M; Ikura M
    J Biomol NMR; 2020 Nov; 74(10-11):531-554. PubMed ID: 32804298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oncogenic K-Ras4B Dimerization Enhances Downstream Mitogen-activated Protein Kinase Signaling.
    Muratcioglu S; Aydin C; Odabasi E; Ozdemir ES; Firat-Karalar EN; Jang H; Tsai CJ; Nussinov R; Kavakli IH; Gursoy A; Keskin O
    J Mol Biol; 2020 Feb; 432(4):1199-1215. PubMed ID: 31931009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The higher level of complexity of K-Ras4B activation at the membrane.
    Jang H; Banerjee A; Chavan TS; Lu S; Zhang J; Gaponenko V; Nussinov R
    FASEB J; 2016 Apr; 30(4):1643-55. PubMed ID: 26718888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of K-Ras4B Membrane Binding by Calmodulin.
    Sperlich B; Kapoor S; Waldmann H; Winter R; Weise K
    Biophys J; 2016 Jul; 111(1):113-22. PubMed ID: 27410739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible-body motions of calmodulin and the farnesylated hypervariable region yield a high-affinity interaction enabling K-Ras4B membrane extraction.
    Jang H; Banerjee A; Chavan T; Gaponenko V; Nussinov R
    J Biol Chem; 2017 Jul; 292(30):12544-12559. PubMed ID: 28623230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of KRas4B protein with C6-ceramide containing lipid model membranes.
    Li L; Dwivedi M; Erwin N; Möbitz S; Nussbaumer P; Winter R
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1008-1014. PubMed ID: 29357287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in Small GTPase K-Ras4B.
    Lu S; Jang H; Nussinov R; Zhang J
    Sci Rep; 2016 Feb; 6():21949. PubMed ID: 26902995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.