BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 30792311)

  • 1. Functional reconstitution of vacuolar H
    Sharma S; Oot RA; Khan MM; Wilkens S
    J Biol Chem; 2019 Apr; 294(16):6439-6449. PubMed ID: 30792311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MgATP hydrolysis destabilizes the interaction between subunit H and yeast V
    Sharma S; Oot RA; Wilkens S
    J Biol Chem; 2018 Jul; 293(27):10718-10730. PubMed ID: 29754144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the Lipid Nanodisc-reconstituted Vacuolar ATPase Proton Channel: DEFINITION OF THE INTERACTION OF ROTOR AND STATOR AND IMPLICATIONS FOR ENZYME REGULATION BY REVERSIBLE DISSOCIATION.
    Stam NJ; Wilkens S
    J Biol Chem; 2017 Feb; 292(5):1749-1761. PubMed ID: 27965356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biolayer interferometry of lipid nanodisc-reconstituted yeast vacuolar H
    Sharma S; Wilkens S
    Protein Sci; 2017 May; 26(5):1070-1079. PubMed ID: 28241399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress protein Oxr1 promotes V-ATPase holoenzyme disassembly in catalytic activity-independent manner.
    Khan MM; Lee S; Couoh-Cardel S; Oot RA; Kim H; Wilkens S; Roh SH
    EMBO J; 2022 Feb; 41(3):e109360. PubMed ID: 34918374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining steps in RAVE-catalyzed V-ATPase assembly using purified RAVE and V-ATPase subcomplexes.
    Jaskolka MC; Tarsio M; Smardon AM; Khan MM; Kane PM
    J Biol Chem; 2021; 296():100703. PubMed ID: 33895134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affinity Purification and Structural Features of the Yeast Vacuolar ATPase Vo Membrane Sector.
    Couoh-Cardel S; Milgrom E; Wilkens S
    J Biol Chem; 2015 Nov; 290(46):27959-71. PubMed ID: 26416888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanism of Oxr1p mediated disassembly of yeast V-ATPase.
    Khan MM; Wilkens S
    EMBO Rep; 2024 May; 25(5):2323-2347. PubMed ID: 38565737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural features and nucleotide-binding capability of the C subunit are integral to the regulation of the eukaryotic V1Vo ATPases.
    Grüber G
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):883-5. PubMed ID: 16042619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 3.5-Å CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase V
    Roh SH; Stam NJ; Hryc CF; Couoh-Cardel S; Pintilie G; Chiu W; Wilkens S
    Mol Cell; 2018 Mar; 69(6):993-1004.e3. PubMed ID: 29526695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tender love and disassembly: How a TLDc domain protein breaks the V-ATPase.
    Wilkens S; Khan MM; Knight K; Oot RA
    Bioessays; 2023 Jul; 45(7):e2200251. PubMed ID: 37183929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F.
    Jefferies KC; Forgac M
    J Biol Chem; 2008 Feb; 283(8):4512-9. PubMed ID: 18156183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae.
    Basak S; Lim J; Manimekalai MS; Balakrishna AM; Grüber G
    J Biol Chem; 2013 Apr; 288(17):11930-9. PubMed ID: 23476018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between the yeast RAVE complex and Vph1-containing V
    Jaskolka MC; Kane PM
    J Biol Chem; 2020 Feb; 295(8):2259-2269. PubMed ID: 31941791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordinated conformational changes in the V
    Vasanthakumar T; Keon KA; Bueler SA; Jaskolka MC; Rubinstein JL
    Nat Struct Mol Biol; 2022 May; 29(5):430-439. PubMed ID: 35469063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Interactions and Cellular Itinerary of the Yeast RAVE (Regulator of the H+-ATPase of Vacuolar and Endosomal Membranes) Complex.
    Smardon AM; Nasab ND; Tarsio M; Diakov TT; Kane PM
    J Biol Chem; 2015 Nov; 290(46):27511-23. PubMed ID: 26405040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of subunits D and F in complex gives insight into energy transmission of the eukaryotic V-ATPase from Saccharomyces cerevisiae.
    Balakrishna AM; Basak S; Manimekalai MS; Grüber G
    J Biol Chem; 2015 Feb; 290(6):3183-96. PubMed ID: 25505269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing subunit-subunit interactions in the yeast vacuolar ATPase by peptide arrays.
    Parsons LS; Wilkens S
    PLoS One; 2012; 7(10):e46960. PubMed ID: 23071676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glu-44 in the amino-terminal α-helix of yeast vacuolar ATPase E subunit (Vma4p) has a role for VoV1 assembly.
    Okamoto-Terry H; Umeki K; Nakanishi-Matsui M; Futai M
    J Biol Chem; 2013 Dec; 288(51):36236-43. PubMed ID: 24196958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of yeast V1-ATPase in the autoinhibited state.
    Oot RA; Kane PM; Berry EA; Wilkens S
    EMBO J; 2016 Aug; 35(15):1694-706. PubMed ID: 27295975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.