BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30792454)

  • 1. Real time observation of binder jetting printing process using high-speed X-ray imaging.
    Parab ND; Barnes JE; Zhao C; Cunningham RW; Fezzaa K; Rollett AD; Sun T
    Sci Rep; 2019 Feb; 9(1):2499. PubMed ID: 30792454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Stair-Step Effects in Binder Jetting Additive Manufacturing Using Grayscale and Dithering-Based Droplet Distribution.
    Hartmann C; van den Bosch L; Spiegel J; Rumschöttel D; Günther D
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Ink-Powder Interactions during 3D Binder Jet Printing Using Time-Resolved X-ray Imaging.
    Barui S; Ding H; Wang Z; Zhao H; Marathe S; Mirihanage W; Basu B; Derby B
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34254-34264. PubMed ID: 32567300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective recrystallization of cellulose composite powders and microstructure creation through 3D binder jetting.
    Holland S; Tuck C; Foster T
    Carbohydr Polym; 2018 Nov; 200():229-238. PubMed ID: 30177161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Linear and 4-Arm Star Poly(vinyl pyrrolidone) for Aqueous Binder Jetting Additive Manufacturing of Personalized Dosage Tablets.
    Wilts EM; Ma D; Bai Y; Williams CB; Long TE
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):23938-23947. PubMed ID: 31252452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A reactive molecular dynamics study of bi-modal particle size distribution in binder-jetting additive manufacturing using stainless-steel powders.
    Gao Y; Clares AP; Manogharan G; van Duin ACT
    Phys Chem Chem Phys; 2022 May; 24(19):11603-11615. PubMed ID: 35535797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of Binder Jetting and Analysis of Magnesium Alloy Bonding Mechanism.
    Yang Q; Li M; Zhao Z; Liao X; Li J
    3D Print Addit Manuf; 2024 Apr; 11(2):e751-e763. PubMed ID: 38694835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a pilot-scale HuskyJet binder jet 3D printer for additive manufacturing of pharmaceutical tablets.
    Chang SY; Jin J; Yan J; Dong X; Chaudhuri B; Nagapudi K; Ma AWK
    Int J Pharm; 2021 Aug; 605():120791. PubMed ID: 34116179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additive Manufacturing Processes in Medical Applications.
    Salmi M
    Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33401601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of inkjetted nanoparticles on metal part properties in binder jetting additive manufacturing.
    Bai Y; Williams CB
    Nanotechnology; 2018 Sep; 29(39):395706. PubMed ID: 29968575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Different Powder Conditioning Strategies on Metal Binder Jetting with Ti-6Al-4V.
    Janzen K; Kallies KJ; Waalkes L; Imgrund P; Emmelmann C
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data related to the experimental design for powder bed binder jetting additive manufacturing of silicone.
    Liravi F; Vlasea M
    Data Brief; 2018 Jun; 18():1477-1483. PubMed ID: 29904650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A laboratory-scale binder jet additive manufacturing testbed for process exploration and material development.
    Oropeza D; Hart AJ
    Int J Adv Manuf Technol; 2021 Jun; 114():3459-3473. PubMed ID: 34163094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of living cells on the bioink printability during laser printing.
    Zhang Z; Xu C; Xiong R; Chrisey DB; Huang Y
    Biomicrofluidics; 2017 May; 11(3):034120. PubMed ID: 28670353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binder-jetting 3D printer capable of voxel-based control over deposited ink volume, adaptive layer thickness, and selective multi-pass printing.
    Persembe E; Parra-Cabrera C; Clasen C; Ameloot R
    Rev Sci Instrum; 2021 Dec; 92(12):125106. PubMed ID: 34972415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data related to the sinter structure analysis of titanium structures fabricated via binder jetting additive manufacturing.
    Wheat E; Vlasea M; Hinebaugh J; Metcalfe C
    Data Brief; 2018 Oct; 20():1029-1038. PubMed ID: 30225318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder.
    Infanger S; Haemmerli A; Iliev S; Baier A; Stoyanov E; Quodbach J
    Int J Pharm; 2019 Jan; 555():198-206. PubMed ID: 30458260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the Binder Jetting Process Parameters and Binder Liquid Composition on the Relevant Attributes of 3D-Printed Tablets.
    Kreft K; Lavrič Z; Stanić T; Perhavec P; Dreu R
    Pharmaceutics; 2022 Jul; 14(8):. PubMed ID: 36015194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and Properties of Barium Titanate Lead-Free Piezoceramic Manufactured by Binder Jetting Process.
    Sufiiarov V; Kantyukov A; Popovich A; Sotov A
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Spherical Powder of Lead-Free BCZT Piezoceramics and Binder Jetting Additive Manufacturing of Triply Periodic Minimum Surface Lattice Structures.
    Sufiiarov V; Kantyukov A; Popovich A; Sotov A
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.