These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30792454)

  • 41. Rayleigh Instability-Assisted Satellite Droplets Elimination in Inkjet Printing.
    Yang Q; Li H; Li M; Li Y; Chen S; Bao B; Song Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41521-41528. PubMed ID: 29110465
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Revealing particle-scale powder spreading dynamics in powder-bed-based additive manufacturing process by high-speed x-ray imaging.
    Escano LI; Parab ND; Xiong L; Guo Q; Zhao C; Fezzaa K; Everhart W; Sun T; Chen L
    Sci Rep; 2018 Oct; 8(1):15079. PubMed ID: 30305675
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Evaluation and Exploration of Piezoelectric Parameter Optimization for Droplet Ejection in Binder Jet 3D Printing Drugs.
    Wang S; Han X; Gao X; Zhang H; Li C; Duan S; Wu J; Wang Z; Zheng A
    3D Print Addit Manuf; 2023 Oct; 10(5):1090-1100. PubMed ID: 37886408
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A modular testbed for mechanized spreading of powder layers for additive manufacturing.
    Oropeza D; Roberts R; Hart AJ
    Rev Sci Instrum; 2021 Jan; 92(1):015114. PubMed ID: 33514203
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A ReaxFF molecular dynamics study of molecular-level interactions during binder jetting 3D-printing.
    Gao Y; Shin YK; Martinez D; Manogharan G; van Duin ACT
    Phys Chem Chem Phys; 2019 Oct; 21(38):21517-21529. PubMed ID: 31536067
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photocurable poly(ethylene glycol) as a bioink for the inkjet 3D pharming of hydrophobic drugs.
    Acosta-Vélez GF; Zhu TZ; Linsley CS; Wu BM
    Int J Pharm; 2018 Jul; 546(1-2):145-153. PubMed ID: 29705105
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Additive Manufacturing of Wood Composite Panels for Individual Layer Fabrication (ILF).
    Buschmann B; Henke K; Talke D; Saile B; Asshoff C; Bunzel F
    Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641238
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Review on Progress, Challenges, and Prospects of Material Jetting of Copper and Tungsten.
    Doddapaneni VVK; Lee K; Aysal HE; Paul BK; Pasebani S; Sierros KA; Okwudire CE; Chang CH
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630889
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A simple large-scale droplet generator for studies of inkjet printing.
    Castrejón-Pita JR; Martin GD; Hoath SD; Hutchings IM
    Rev Sci Instrum; 2008 Jul; 79(7):075108. PubMed ID: 18681735
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery.
    Trombetta R; Inzana JA; Schwarz EM; Kates SL; Awad HA
    Ann Biomed Eng; 2017 Jan; 45(1):23-44. PubMed ID: 27324800
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of CaCO
    Kim TH; Ye B; Jeong B; Lee MJ; Song A; Cho I; Lee H; Kim HD
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063758
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrafast X-ray imaging of laser-metal additive manufacturing processes.
    Parab ND; Zhao C; Cunningham R; Escano LI; Fezzaa K; Everhart W; Rollett AD; Chen L; Sun T
    J Synchrotron Radiat; 2018 Sep; 25(Pt 5):1467-1477. PubMed ID: 30179187
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Understanding droplet jetting on varying substrate for biological applications.
    Lee JM; Huang X; Goh GL; Tran T; Yeong WY
    Int J Bioprint; 2023; 9(5):758. PubMed ID: 37457927
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics.
    Biver E; Rapp L; Alloncle AP; Serra P; Delaporte P
    Opt Express; 2014 Jul; 22(14):17122-34. PubMed ID: 25090527
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Printing with Satellite Droplets.
    Zhang Y; Li D; Liu Y; Wittstock G
    Small; 2018 Sep; 14(39):e1802583. PubMed ID: 30176113
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photocurable Bioinks for the 3D Pharming of Combination Therapies.
    Acosta-Vélez GF; Linsley CS; Zhu TZ; Wu W; Wu BM
    Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961297
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Study of Impingement Types and Printing Quality during Laser Printing of Viscoelastic Alginate Solutions.
    Zhang Z; Xiong R; Corr DT; Huang Y
    Langmuir; 2016 Mar; 32(12):3004-14. PubMed ID: 26934283
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An instrument for in situ characterization of powder spreading dynamics in powder-bed-based additive manufacturing processes.
    Escano LI; Parab ND; Guo Q; Qu M; Fezzaa K; Everhart W; Sun T; Chen L
    Rev Sci Instrum; 2022 Apr; 93(4):043707. PubMed ID: 35489882
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamics of field-induced droplet ionization: time-resolved studies of distortion, jetting, and progeny formation from charged and neutral methanol droplets exposed to strong electric fields.
    Grimm RL; Beauchamp JL
    J Phys Chem B; 2005 Apr; 109(16):8244-50. PubMed ID: 16851963
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction.
    Zhao C; Fezzaa K; Cunningham RW; Wen H; De Carlo F; Chen L; Rollett AD; Sun T
    Sci Rep; 2017 Jun; 7(1):3602. PubMed ID: 28620232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.