These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30792454)

  • 61. Standard method for microCT-based additive manufacturing quality control 4: Metal powder analysis.
    du Plessis A; Sperling P; Beerlink A; du Preez WB; le Roux SG
    MethodsX; 2018; 5():1336-1345. PubMed ID: 30406023
    [TBL] [Abstract][Full Text] [Related]  

  • 62. How to manipulate droplet jetting from needle type jet dispensers.
    Phung TH; Kwon KS
    Sci Rep; 2019 Dec; 9(1):19669. PubMed ID: 31873178
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bioinspired Tip-Guidance Liquid Jetting and Droplet Emission at a Rotary Disk
    Wang T; Si Y; Li N; Dong Z; Jiang L
    ACS Nano; 2019 Nov; 13(11):13100-13108. PubMed ID: 31702896
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Printability and Setting Time of CSA Cement with Na
    Na O; Kim K; Lee H; Lee H
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34070415
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Droplet encapsulation of particles in different regimes and sorting of particle-encapsulating-droplets from empty droplets.
    Jayaprakash KS; Sen AK
    Biomicrofluidics; 2019 May; 13(3):034108. PubMed ID: 31123540
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High-resolution direct 3D printed PLGA scaffolds: print and shrink.
    Chia HN; Wu BM
    Biofabrication; 2014 Dec; 7(1):015002. PubMed ID: 25514829
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.
    Zhou Z; Buchanan F; Mitchell C; Dunne N
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():1-10. PubMed ID: 24656346
    [TBL] [Abstract][Full Text] [Related]  

  • 68. System Performance and Process Capability in Additive Manufacturing: Quality Control for Polymer Jetting.
    Udroiu R; Braga IC
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32512894
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A Numerical Investigation on the Collision Behavior of Polymer Droplets.
    Qian L; Cong H; Zhu C
    Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 31991675
    [TBL] [Abstract][Full Text] [Related]  

  • 70. New Methodology for Evaluating Surface Quality of Experimental Aerodynamic Models Manufactured by Polymer Jetting Additive Manufacturing.
    Udroiu R
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160361
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing.
    Li Q; Alloncle AP; Grojo D; Delaporte P
    Opt Express; 2017 Oct; 25(20):24164-24172. PubMed ID: 29041362
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Discrete Element Simulation of the Effect of Roller-Spreading Parameters on Powder-Bed Density in Additive Manufacturing.
    Zhang J; Tan Y; Bao T; Xu Y; Xiao X; Jiang S
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429173
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Monodisperse polymeric particles prepared by ink-jet printing: double emulsions, hydrogels and polymer mixtures.
    Böhmer MR; Steenbakkers JA; Chlon C
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):47-52. PubMed ID: 20413282
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization of Metal Powders Used for Additive Manufacturing.
    Slotwinski JA; Garboczi EJ; Stutzman PE; Ferraris CF; Watson SS; Peltz MA
    J Res Natl Inst Stand Technol; 2014; 119():460-93. PubMed ID: 26601040
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fluid dynamical analysis of the distribution of ink jet printed biomolecules in microarray substrates for genotyping applications.
    Dijksman JF; Pierik A
    Biomicrofluidics; 2008 Oct; 2(4):44101. PubMed ID: 19693365
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Jet-based methods to print living cells.
    Ringeisen BR; Othon CM; Barron JA; Young D; Spargo BJ
    Biotechnol J; 2006 Sep; 1(9):930-48. PubMed ID: 16895314
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Pore elimination mechanisms during 3D printing of metals.
    Hojjatzadeh SMH; Parab ND; Yan W; Guo Q; Xiong L; Zhao C; Qu M; Escano LI; Xiao X; Fezzaa K; Everhart W; Sun T; Chen L
    Nat Commun; 2019 Jul; 10(1):3088. PubMed ID: 31300676
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Inkjet printing and electrical characterisation of DNA-templated cadmium sulphide nanowires.
    Nurdillayeva RN; Oshido AB; Bamford TA; El-Zubir O; Houlton A; Hedley J; Pike AR; Horrocks BR
    Nanotechnology; 2018 Apr; 29(13):135704. PubMed ID: 29432211
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stable electric-field driven cone-jetting of concentrated biosuspensions.
    Jayasinghe SN; Townsend-Nicholson A
    Lab Chip; 2006 Aug; 6(8):1086-90. PubMed ID: 16874383
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Spraying dynamics in continuous wave laser printing of conductive inks.
    Sopeña P; González-Torres S; Fernández-Pradas JM; Serra P
    Sci Rep; 2018 May; 8(1):7999. PubMed ID: 29789662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.