These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30793089)

  • 1. Dynamic properties of simulated brain network models and empirical resting-state data.
    Kashyap A; Keilholz S
    Netw Neurosci; 2019; 3(2):405-426. PubMed ID: 30793089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical Mechanisms of Interictal Resting-State Functional Connectivity in Epilepsy.
    Courtiol J; Guye M; Bartolomei F; Petkoski S; Jirsa VK
    J Neurosci; 2020 Jul; 40(29):5572-5588. PubMed ID: 32513827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning approach to estimating initial conditions of Brain Network Models in reference to measured fMRI data.
    Kashyap A; Plis S; Ritter P; Keilholz S
    Front Neurosci; 2023; 17():1159914. PubMed ID: 37529235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Resting Spatio-Temporal Dynamics of a Neural Mass Model Using Resting fMRI Connectivity and EEG Microstates.
    Endo H; Hiroe N; Yamashita O
    Front Comput Neurosci; 2019; 13():91. PubMed ID: 32009922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
    DSouza AM; Abidin AZ; Leistritz L; Wismüller A
    J Neurosci Methods; 2017 Aug; 287():68-79. PubMed ID: 28629720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain network constraints and recurrent neural networks reproduce unique trajectories and state transitions seen over the span of minutes in resting-state fMRI.
    Kashyap A; Keilholz S
    Netw Neurosci; 2020; 4(2):448-466. PubMed ID: 32537536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI.
    Wang M; Huang J; Liu M; Zhang D
    Med Image Anal; 2021 Jul; 71():102063. PubMed ID: 33910109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and Analysis of a New Resting-State Whole-Brain Network Model.
    Cui D; Li H; Shao H; Gu G; Guo X; Li X
    Brain Sci; 2024 Feb; 14(3):. PubMed ID: 38539628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive frequency-based modeling of whole-brain oscillations: Predicting regional vulnerability and hazardousness rates.
    Kaboodvand N; van den Heuvel MP; Fransson P
    Netw Neurosci; 2019; 3(4):1094-1120. PubMed ID: 31637340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early development of spatial patterns of power-law frequency scaling in FMRI resting-state and EEG data in the newborn brain.
    Fransson P; Metsäranta M; Blennow M; Åden U; Lagercrantz H; Vanhatalo S
    Cereb Cortex; 2013 Mar; 23(3):638-46. PubMed ID: 22402348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of fluctuations in global network topology of modeled and empirical brain functional connectivity.
    Fukushima M; Sporns O
    PLoS Comput Biol; 2018 Sep; 14(9):e1006497. PubMed ID: 30252835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the intersection between data quality and dynamical modelling of large-scale fMRI signals.
    Aquino KM; Fulcher B; Oldham S; Parkes L; Gollo L; Deco G; Fornito A
    Neuroimage; 2022 Aug; 256():119051. PubMed ID: 35276367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-varying dynamic network model for dynamic resting state functional connectivity in fMRI and MEG imaging.
    Jiang F; Jin H; Gao Y; Xie X; Cummings J; Raj A; Nagarajan S
    Neuroimage; 2022 Jul; 254():119131. PubMed ID: 35337963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of metastable dynamics in functional brain organization via spontaneous fMRI signal and whole-brain computational modeling.
    Won Hee Lee ; Frangou S
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4471-4474. PubMed ID: 29060890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction and classification of sleep quality based on phase synchronization related whole-brain dynamic connectivity using resting state fMRI.
    Zhou Z; Cai B; Zhang G; Zhang A; Calhoun VD; Wang YP
    Neuroimage; 2020 Nov; 221():117190. PubMed ID: 32711063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resting state network connectivity is attenuated by fMRI acoustic noise.
    Pellegrino G; Schuler AL; Arcara G; Di Pino G; Piccione F; Kobayashi E
    Neuroimage; 2022 Feb; 247():118791. PubMed ID: 34920084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating brain connectivity with δ⁹-tetrahydrocannabinol: a pharmacological resting state FMRI study.
    Klumpers LE; Cole DM; Khalili-Mahani N; Soeter RP; Te Beek ET; Rombouts SA; van Gerven JM
    Neuroimage; 2012 Nov; 63(3):1701-11. PubMed ID: 22885247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative evaluation of simulated functional brain networks in graph theoretical analysis.
    Lee WH; Bullmore E; Frangou S
    Neuroimage; 2017 Feb; 146():724-733. PubMed ID: 27568060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
    Chu PPW; Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Neuroimage; 2018 Jun; 173():72-87. PubMed ID: 29452265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.