BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30793094)

  • 1. Modeling Neural Behavior and Pain During Bladder Distention using an Agent-based Model of the Central Nucleus of the Amygdala.
    Baktay J; Neilan RM; Behun M; McQuaid N; Kolber B
    Spora; 2019; 5():1-13. PubMed ID: 30793094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agent-based modeling of the central amygdala and pain using cell-type specific physiological parameters.
    Miller Neilan R; Majetic G; Gil-Silva M; Adke AP; Carrasquillo Y; Kolber BJ
    PLoS Comput Biol; 2021 Jun; 17(6):e1009097. PubMed ID: 34101729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing a 3-D computational model of neurons in the central amygdala to understand pharmacological targets for pain.
    Miller Neilan R; Reith C; Anandan I; Kraeuter K; Allen HN; Kolber BJ
    Front Pain Res (Lausanne); 2023; 4():1183553. PubMed ID: 37332477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the spinal pudendo-vesical reflex for bladder control by pudendal afferent stimulation.
    McGee MJ; Grill WM
    J Comput Neurosci; 2016 Jun; 40(3):283-96. PubMed ID: 26968615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reciprocal changes in the firing probability of lateral and central medial amygdala neurons.
    Collins DR; Paré D
    J Neurosci; 1999 Jan; 19(2):836-44. PubMed ID: 9880603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling.
    Mukherjee P; Kaplan E
    J Neurophysiol; 1995 Sep; 74(3):1222-43. PubMed ID: 7500146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing of nociceptive mechanical and thermal information in central amygdala neurons with knee-joint input.
    Neugebauer V; Li W
    J Neurophysiol; 2002 Jan; 87(1):103-12. PubMed ID: 11784733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State dependent response of the locus caeruleus neurons to bladder distention.
    Imada N; Koyama Y; Kawauchi A; Watanabe H; Kayama Y
    J Urol; 2000 Nov; 164(5):1740-4. PubMed ID: 11025762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vagal motor neurons in rats respond to noxious and physiological gastrointestinal distention differentially.
    Zhang X; Jiang C; Tan Z; Fogel R
    Eur J Neurosci; 2002 Dec; 16(11):2027-38. PubMed ID: 12473070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of electrical stimulation of the central nucleus of the amygdala on the in vivo electrophysiological activity of rat nigral dopaminergic neurons.
    Rouillard C; Freeman AS
    Synapse; 1995 Dec; 21(4):348-56. PubMed ID: 8869165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the daily rhythm of human pain processing in the dorsal horn.
    Crodelle J; Piltz SH; Hagenauer MH; Booth V
    PLoS Comput Biol; 2019 Jul; 15(7):e1007106. PubMed ID: 31295266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that limbic neural plasticity in the right hemisphere mediates partial kindling induced lasting increases in anxiety-like behavior: effects of low frequency stimulation (quenching?) on long term potentiation of amygdala efferents and behavior following kindling.
    Adamec RE
    Brain Res; 1999 Aug; 839(1):133-52. PubMed ID: 10482807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predominant synaptic potentiation and activation in the right central amygdala are independent of bilateral parabrachial activation in the hemilateral trigeminal inflammatory pain model of rats.
    Miyazawa Y; Takahashi Y; Watabe AM; Kato F
    Mol Pain; 2018; 14():1744806918807102. PubMed ID: 30270724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction and control of neural responses to pulsatile electrical stimulation.
    Campbell LJ; Sly DJ; O'Leary SJ
    J Neural Eng; 2012 Apr; 9(2):026023. PubMed ID: 22419164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary Role of the Amygdala in Spontaneous Inflammatory Pain- Associated Activation of Pain Networks - A Chemogenetic Manganese-Enhanced MRI Approach.
    Arimura D; Shinohara K; Takahashi Y; Sugimura YK; Sugimoto M; Tsurugizawa T; Marumo K; Kato F
    Front Neural Circuits; 2019; 13():58. PubMed ID: 31632244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of ventral pallidal neurons to amygdala stimulation and its modulation by dopamine projections to nucleus accumbens.
    Yim CY; Mogenson GJ
    J Neurophysiol; 1983 Jul; 50(1):148-61. PubMed ID: 6875644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parasympathetic preganglionic neurons in the sacral spinal cord.
    De Groat WC; Booth AM; Milne RJ; Roppolo JR
    J Auton Nerv Syst; 1982 Jan; 5(1):23-43. PubMed ID: 7056993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain.
    Li JN; Sheets PL
    J Physiol; 2018 Dec; 596(24):6289-6305. PubMed ID: 30281797
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.