BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 30793387)

  • 1. Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting.
    Guo Y; Park T; Yi JW; Henzie J; Kim J; Wang Z; Jiang B; Bando Y; Sugahara Y; Tang J; Yamauchi Y
    Adv Mater; 2019 Apr; 31(17):e1807134. PubMed ID: 30793387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalysts Based on Transition Metal Borides and Borates for the Oxygen Evolution Reaction.
    Cui L; Zhang W; Zheng R; Liu J
    Chemistry; 2020 Sep; 26(51):11661-11672. PubMed ID: 32320104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Earth-Abundant Transition-Metal-Based Bifunctional Electrocatalysts for Overall Water Splitting in Alkaline Media.
    Yu J; Le TA; Tran NQ; Lee H
    Chemistry; 2020 May; 26(29):6423-6436. PubMed ID: 32103541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting.
    Jiang Y; Lu Y
    Nanoscale; 2020 May; 12(17):9327-9351. PubMed ID: 32315016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review.
    Li D; Shi J; Li C
    Small; 2018 Jun; 14(23):e1704179. PubMed ID: 29575653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen production from water electrolysis: role of catalysts.
    Wang S; Lu A; Zhong CJ
    Nano Converg; 2021 Feb; 8(1):4. PubMed ID: 33575919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of transition metal sulfide and reduced graphene oxide hybrids as efficient electrocatalysts for oxygen evolution reactions.
    Hong YR; Mhin S; Kwon J; Han WS; Song T; Han H
    R Soc Open Sci; 2018 Sep; 5(9):180927. PubMed ID: 30839659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting.
    Wang J; Cui W; Liu Q; Xing Z; Asiri AM; Sun X
    Adv Mater; 2016 Jan; 28(2):215-30. PubMed ID: 26551487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives.
    Ghosh S; Basu RN
    Nanoscale; 2018 Jun; 10(24):11241-11280. PubMed ID: 29897365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives.
    Li S; Li E; An X; Hao X; Jiang Z; Guan G
    Nanoscale; 2021 Aug; 13(30):12788-12817. PubMed ID: 34477767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives.
    Lakhan MN; Hanan A; Hussain A; Ali Soomro I; Wang Y; Ahmed M; Aftab U; Sun H; Arandiyan H
    Chem Commun (Camb); 2024 May; 60(39):5104-5135. PubMed ID: 38625567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of modulation strategies for improving the catalytic performance of transition metal sulfide self-supported electrodes for the hydrogen evolution reaction.
    Liu Q; Liu K; Huang J; Hui C; Li X; Feng L
    Dalton Trans; 2024 Feb; 53(9):3959-3969. PubMed ID: 38294259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Support and Interface Effects in Water-Splitting Electrocatalysts.
    Zhang J; Zhang Q; Feng X
    Adv Mater; 2019 Aug; 31(31):e1808167. PubMed ID: 30838688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting.
    Quan L; Jiang H; Mei G; Sun Y; You B
    Chem Rev; 2024 Apr; 124(7):3694-3812. PubMed ID: 38517093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Earth-Abundant Transition-Metal-Based Electrocatalysts for Water Electrolysis to Produce Renewable Hydrogen.
    Li A; Sun Y; Yao T; Han H
    Chemistry; 2018 Dec; 24(69):18334-18355. PubMed ID: 30198114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen Engineering on 3D Dandelion-Flower-Like CoS
    Yao N; Li P; Zhou Z; Meng R; Cheng G; Luo W
    Small; 2019 Aug; 15(31):e1901993. PubMed ID: 31207102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing MOF Nanoarchitectures for Electrochemical Water Splitting.
    Zhang B; Zheng Y; Ma T; Yang C; Peng Y; Zhou Z; Zhou M; Li S; Wang Y; Cheng C
    Adv Mater; 2021 Apr; 33(17):e2006042. PubMed ID: 33749910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of high-performance MoS
    Xu X; Xu H; Cheng D
    Nanoscale; 2019 Nov; 11(42):20228-20237. PubMed ID: 31621737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.