BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 30793387)

  • 21. Interface engineering triggered by carbon nanotube-supported multiple sulfides for boosting oxygen evolution.
    Chen M; Hu Y; Liang K; Zhao Z; Luo Y; Luo S; Ma J
    Nanoscale; 2021 Nov; 13(44):18763-18772. PubMed ID: 34747966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal-Organic Framework-Based Nanomaterials for Electrocatalytic Oxygen Evolution.
    Liu Y; Wang Y; Zhao S; Tang Z
    Small Methods; 2022 Oct; 6(10):e2200773. PubMed ID: 36050891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cerium-Doped Nickel Sulfide Nanospheres as Efficient Catalysts for Overall Water Splitting.
    Li D; Guo H; Wang H; Pan L; Lin J
    ChemSusChem; 2024 May; ():e202400751. PubMed ID: 38752305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction.
    Du J; Li F; Sun L
    Chem Soc Rev; 2021 Mar; 50(4):2663-2695. PubMed ID: 33400745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution.
    Sun H; Yan Z; Liu F; Xu W; Cheng F; Chen J
    Adv Mater; 2020 Jan; 32(3):e1806326. PubMed ID: 30932263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting.
    Jiang WJ; Tang T; Zhang Y; Hu JS
    Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FeS
    Li Y; Yin J; An L; Lu M; Sun K; Zhao YQ; Gao D; Cheng F; Xi P
    Small; 2018 Jun; 14(26):e1801070. PubMed ID: 29808557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony.
    Anantharaj S; Noda S
    Small; 2020 Jan; 16(2):e1905779. PubMed ID: 31823508
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting.
    Zheng X; Han X; Zhang Y; Wang J; Zhong C; Deng Y; Hu W
    Nanoscale; 2019 Mar; 11(12):5646-5654. PubMed ID: 30865205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic and Structural Engineering of Carbon-Based Metal-Free Electrocatalysts for Water Splitting.
    Wang X; Vasileff A; Jiao Y; Zheng Y; Qiao SZ
    Adv Mater; 2019 Mar; 31(13):e1803625. PubMed ID: 30276904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transition-Metal (Co, Ni, and Fe)-Based Electrocatalysts for the Water Oxidation Reaction.
    Han L; Dong S; Wang E
    Adv Mater; 2016 Nov; 28(42):9266-9291. PubMed ID: 27569575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges.
    Zhang K; Zou R
    Small; 2021 Sep; 17(37):e2100129. PubMed ID: 34114334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. "Lewis Base-Hungry" Amorphous-Crystalline Nickel Borate-Nickel Sulfide Heterostructures by In Situ Structural Engineering as Effective Bifunctional Electrocatalysts toward Overall Water Splitting.
    Sun Z; Wang X; Yuan M; Yang H; Su Y; Shi K; Nan C; Li H; Sun G; Zhu J; Yang X; Chen S
    ACS Appl Mater Interfaces; 2020 May; 12(21):23896-23903. PubMed ID: 32362112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts.
    Wu T; Dong C; Sun D; Huang F
    Nanoscale; 2021 Jan; 13(3):1581-1595. PubMed ID: 33444426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iridium-Based Multimetallic Porous Hollow Nanocrystals for Efficient Overall-Water-Splitting Catalysis.
    Feng J; Lv F; Zhang W; Li P; Wang K; Yang C; Wang B; Yang Y; Zhou J; Lin F; Wang GC; Guo S
    Adv Mater; 2017 Dec; 29(47):. PubMed ID: 29083497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanostructured Bifunctional Redox Electrocatalysts.
    Kuang M; Zheng G
    Small; 2016 Nov; 12(41):5656-5675. PubMed ID: 27717177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Air-Stable Mn doped CuCl/CuO Hybrid Triquetrous Nanoarrays as Bifunctional Electrocatalysts for Overall Water Splitting.
    Chen Y; Cai Z; Wang D; Yan Y; Wang P; Wang X
    Chem Asian J; 2021 Oct; 16(20):3107-3113. PubMed ID: 34467668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts.
    Chang H; Liang Z; Wang L; Wang C
    Nanoscale; 2022 Apr; 14(15):5639-5656. PubMed ID: 35333268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3 D Porous Nickel-Cobalt Nitrides Supported on Nickel Foam as Efficient Electrocatalysts for Overall Water Splitting.
    Wang Y; Zhang B; Pan W; Ma H; Zhang J
    ChemSusChem; 2017 Nov; 10(21):4170-4177. PubMed ID: 28857449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cobalt Sulfide/Nickel Sulfide Heterostructure Directly Grown on Nickel Foam: An Efficient and Durable Electrocatalyst for Overall Water Splitting Application.
    Shit S; Chhetri S; Jang W; Murmu NC; Koo H; Samanta P; Kuila T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):27712-27722. PubMed ID: 30044090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.