These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 30793453)
1. From clear lakes to murky waters - tracing the functional response of high-latitude lake communities to concurrent 'greening' and 'browning'. Hayden B; Harrod C; Thomas SM; Eloranta AP; Myllykangas JP; Siwertsson A; Praebel K; Knudsen R; Amundsen PA; Kahilainen KK Ecol Lett; 2019 May; 22(5):807-816. PubMed ID: 30793453 [TBL] [Abstract][Full Text] [Related]
2. Bottom-up and top-down effects of browning and warming on shallow lake food webs. Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P Glob Chang Biol; 2019 Feb; 25(2):504-521. PubMed ID: 30430702 [TBL] [Abstract][Full Text] [Related]
3. Increasing temperature and productivity change biomass, trophic pyramids and community-level omega-3 fatty acid content in subarctic lake food webs. Keva O; Taipale SJ; Hayden B; Thomas SM; Vesterinen J; Kankaala P; Kahilainen KK Glob Chang Biol; 2021 Jan; 27(2):282-296. PubMed ID: 33124178 [TBL] [Abstract][Full Text] [Related]
4. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes. Eloranta AP; Kahilainen KK; Amundsen PA; Knudsen R; Harrod C; Jones RI Ecol Evol; 2015 Apr; 5(8):1664-75. PubMed ID: 25937909 [TBL] [Abstract][Full Text] [Related]
5. Environmental and biological factors are joint drivers of mercury biomagnification in subarctic lake food webs along a climate and productivity gradient. Kozak N; Ahonen SA; Keva O; Østbye K; Taipale SJ; Hayden B; Kahilainen KK Sci Total Environ; 2021 Jul; 779():146261. PubMed ID: 34030265 [TBL] [Abstract][Full Text] [Related]
6. Food web efficiency differs between humic and clear water lake communities in response to nutrients and light. Faithfull CL; Mathisen P; Wenzel A; Bergström AK; Vrede T Oecologia; 2015 Mar; 177(3):823-835. PubMed ID: 25373827 [TBL] [Abstract][Full Text] [Related]
7. Asymmetrical competition between aquatic primary producers in a warmer and browner world. Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P Ecology; 2016 Oct; 97(10):2580-2592. PubMed ID: 27859128 [TBL] [Abstract][Full Text] [Related]
9. Pelagic food webs of humic lakes show low short-term response to forest harvesting. Deininger A; Jonsson A; Karlsson J; Bergström AK Ecol Appl; 2019 Jan; 29(1):e01813. PubMed ID: 30312509 [TBL] [Abstract][Full Text] [Related]
10. Time- and depth-wise trophic niche shifts in Antarctic benthos. Calizza E; Careddu G; Sporta Caputi S; Rossi L; Costantini ML PLoS One; 2018; 13(3):e0194796. PubMed ID: 29570741 [TBL] [Abstract][Full Text] [Related]
11. Dual fuels: intra-annual variation in the relative importance of benthic and pelagic resources to maintenance, growth and reproduction in a generalist salmonid fish. Hayden B; Harrod C; Kahilainen KK J Anim Ecol; 2014 Nov; 83(6):1501-12. PubMed ID: 24738779 [TBL] [Abstract][Full Text] [Related]
12. Landscape determinants of pelagic and benthic primary production in northern lakes. Puts IC; Ask J; Siewert MB; Sponseller RA; Hessen DO; Bergström AK Glob Chang Biol; 2022 Dec; 28(23):7063-7077. PubMed ID: 36054573 [TBL] [Abstract][Full Text] [Related]
13. Nearshore energy subsidies support Lake Michigan fishes and invertebrates following major changes in food web structure. Turschak BA; Bunnell D; Czesny S; Höök TO; Janssen J; Warner D; Bootsma HA Ecology; 2014 May; 95(5):1243-52. PubMed ID: 25000756 [TBL] [Abstract][Full Text] [Related]
14. Food webs in isolation: The food-web structure of a freshwater reservoir with armoured shores in a former coastal bay area. Tack LFJ; Vonk JA; van Riel MC; de Leeuw JJ; Koopman J; Maathuis MAM; Schilder K; van Hall RL; Huisman J; van der Geest HG Sci Total Environ; 2024 May; 925():171780. PubMed ID: 38499096 [TBL] [Abstract][Full Text] [Related]
15. Climate and productivity affect total mercury concentration and bioaccumulation rate of fish along a spatial gradient of subarctic lakes. Ahonen SA; Hayden B; Leppänen JJ; Kahilainen KK Sci Total Environ; 2018 Oct; 637-638():1586-1596. PubMed ID: 29801252 [TBL] [Abstract][Full Text] [Related]
16. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Vadeboncoeur Y; Peterson G; Vander Zanden MJ; Kalff J Ecology; 2008 Sep; 89(9):2542-52. PubMed ID: 18831175 [TBL] [Abstract][Full Text] [Related]
17. Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Solomon CT; Carpenter SR; Clayton MK; Cole JJ; Coloso JJ; Pace ML; Zanden MJ; Weidel BC Ecology; 2011 May; 92(5):1115-25. PubMed ID: 21661572 [TBL] [Abstract][Full Text] [Related]
18. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. Meunier CL; Gundale MJ; Sánchez IS; Liess A Glob Chang Biol; 2016 Jan; 22(1):164-79. PubMed ID: 25953197 [TBL] [Abstract][Full Text] [Related]
19. Linking permafrost thaw to shifting biogeochemistry and food web resources in an arctic river. Kendrick MR; Huryn AD; Bowden WB; Deegan LA; Findlay RH; Hershey AE; Peterson BJ; Beneš JP; Schuett EB Glob Chang Biol; 2018 Dec; 24(12):5738-5750. PubMed ID: 30218544 [TBL] [Abstract][Full Text] [Related]
20. Warming winters in lakes: Later ice onset promotes consumer overwintering and shapes springtime planktonic food webs. Hébert MP; Beisner BE; Rautio M; Fussmann GF Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34810251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]