These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 30794070)

  • 1. Power models and average ship parameter effects on marine emissions inventories.
    Brown IN; Aldridge MF
    J Air Waste Manag Assoc; 2019 Jun; 69(6):752-763. PubMed ID: 30794070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and measurement of SOx, CO
    Murcia González JC
    Environ Monit Assess; 2021 Jun; 193(6):374. PubMed ID: 34061261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The activity-based methodology to assess ship emissions - A review.
    Nunes RAO; Alvim-Ferraz MCM; Martins FG; Sousa SIV
    Environ Pollut; 2017 Dec; 231(Pt 1):87-103. PubMed ID: 28793241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emissions tradeoffs among alternative marine fuels: total fuel cycle analysis of residual oil, marine gas oil, and marine diesel oil.
    Corbett JJ; Winebrake JJ
    J Air Waste Manag Assoc; 2008 Apr; 58(4):538-42. PubMed ID: 18422040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AIS-based operational phase identification using Progressive Ablation Feature Selection with machine learning for improving ship emission estimates.
    Duan K; Li Q; Liu S; Liu Y; Wang S; Li S; Wang X; Ma N; Ma Y
    J Air Waste Manag Assoc; 2024 Feb; 74(2):100-115. PubMed ID: 38215336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of fuel switching on oceangoing vessels in the Gulf of Mexico.
    Browning L; Hartley S; Bandemehr A; Gathright K; Miller W
    J Air Waste Manag Assoc; 2012 Sep; 62(9):1093-101. PubMed ID: 23019823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Big data-driven carbon emission traceability list and characteristics of ships in maritime transportation-a case study of Tianjin Port.
    Wang P; Hu Q; Xie W; Wu L; Wang F; Mei Q
    Environ Sci Pollut Res Int; 2023 Jun; 30(27):71103-71119. PubMed ID: 37160512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An AIS-based high-resolution ship emission inventory and its uncertainty in Pearl River Delta region, China.
    Li C; Yuan Z; Ou J; Fan X; Ye S; Xiao T; Shi Y; Huang Z; Ng SKW; Zhong Z; Zheng J
    Sci Total Environ; 2016 Dec; 573():1-10. PubMed ID: 27543686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the uncertainty of the AIS-based bottom-up approach for estimating ship emissions.
    Chen X; Yang J
    Mar Pollut Bull; 2024 Feb; 199():115968. PubMed ID: 38181472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meso-level carbon dioxide emission model based on voyage for inland ships in the Yangtze River.
    Zhou C; Ding Y; Huang H; Huang L; Lu Z; Wen Y
    Sci Total Environ; 2022 Sep; 838(Pt 3):156271. PubMed ID: 35643126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total life cycle emissions of post-Panamax containerships powered by conventional fuel or natural gas.
    Hua J; Cheng CW; Hwang DS
    J Air Waste Manag Assoc; 2019 Feb; 69(2):131-144. PubMed ID: 30067463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of PM
    Zhao J; Zhang Y; Wang T; Sun L; Yang Z; Lin Y; Chen Y; Mao H
    Chemosphere; 2019 Jun; 225():43-52. PubMed ID: 30856474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inland ship emission inventory and its impact on air quality over the middle Yangtze River, China.
    Huang H; Zhou C; Huang L; Xiao C; Wen Y; Li J; Lu Z
    Sci Total Environ; 2022 Oct; 843():156770. PubMed ID: 35728651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shipping emission inventories in China's Bohai Bay, Yangtze River Delta, and Pearl River Delta in 2018.
    Wan Z; Ji S; Liu Y; Zhang Q; Chen J; Wang Q
    Mar Pollut Bull; 2020 Feb; 151():110882. PubMed ID: 32056656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Present-day and future global bottom-up ship emission inventories including polar routes.
    Paxian A; Eyring V; Beer W; Sausen R; Wright C
    Environ Sci Technol; 2010 Feb; 44(4):1333-9. PubMed ID: 20088494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact analysis of ECA policies on ship trajectories and emissions.
    Weng J; Han T; Shi K; Li G
    Mar Pollut Bull; 2022 Jun; 179():113687. PubMed ID: 35504212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen oxide emission calculation for post-Panamax container ships by using engine operation power probability as weighting factor: A slow-steaming case.
    Cheng CW; Hua J; Hwang DS
    J Air Waste Manag Assoc; 2018 Jun; 68(6):588-597. PubMed ID: 29215965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Vessel Emission Inventories and Emission Characteristics for Inland Rivers in Jiangsu Province].
    Xu WW; Yin CQ; Xu XJ; Zhang W
    Huan Jing Ke Xue; 2019 Jun; 40(6):2595-2606. PubMed ID: 31854650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assigning machinery power values for estimating ship exhaust emissions: Comparison of auxiliary power schemes.
    Goldsworthy B; Goldsworthy L
    Sci Total Environ; 2019 Mar; 657():963-977. PubMed ID: 30677962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring in-use ship emissions with international and U.S. federal methods.
    Khan MY; Ranganathan S; Agrawal H; Welch WA; Laroo C; Miller JW; Cocker DR
    J Air Waste Manag Assoc; 2013 Mar; 63(3):284-91. PubMed ID: 23556238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.