These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30794162)

  • 1. Rehab-Net: Deep Learning Framework for Arm Movement Classification Using Wearable Sensors for Stroke Rehabilitation.
    Panwar M; Biswas D; Bajaj H; Jobges M; Turk R; Maharatna K; Acharyya A
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3026-3037. PubMed ID: 30794162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L
    J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Machine Learning-Based Assessment for Elbow Spasticity Using Inertial Sensors.
    Kim JY; Park G; Lee SA; Nam Y
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning-Enhanced Internet of Things for Activity Recognition in Post-Stroke Rehabilitation.
    Jin F; Zou M; Peng X; Lei H; Ren Y
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):3851-3859. PubMed ID: 37963004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating Activity Recognition for Hemiparetic Stroke Patients Using Wearable Sensors: A Deep Learning Approach with Data Augmentation.
    Oh Y; Choi SA; Shin Y; Jeong Y; Lim J; Kim S
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding stroke survivors' preferences regarding wearable sensor feedback on functional movement: a mixed-methods study.
    Demers M; Cain A; Bishop L; Gunby T; Rowe JB; Zondervan DK; Winstein CJ
    J Neuroeng Rehabil; 2023 Nov; 20(1):146. PubMed ID: 37915055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method to qualitatively assess arm use in stroke survivors in the home environment.
    Leuenberger K; Gonzenbach R; Wachter S; Luft A; Gassert R
    Med Biol Eng Comput; 2017 Jan; 55(1):141-150. PubMed ID: 27106757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning for Sensor-Based Rehabilitation Exercise Recognition and Evaluation.
    Zhu ZA; Lu YC; You CH; Chiang CK
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic control of forearm based on accelerometer data and artificial neural networks.
    Mijovic B; Popovic MB; Popovic DB
    Braz J Med Biol Res; 2008 May; 41(5):389-97. PubMed ID: 18516468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classifying and tracking rehabilitation interventions through machine-learning algorithms in individuals with stroke.
    Espinoza Bernal VC; Hiremath SV; Wolf B; Riley B; Mendonca RJ; Johnson MJ
    J Rehabil Assist Technol Eng; 2021; 8():20556683211044640. PubMed ID: 34646574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of a Finger-Worn Accelerometer for Monitoring of Hand Use in Ambulatory Settings.
    Liu X; Rajan S; Ramasarma N; Bonato P; Lee SI
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):599-606. PubMed ID: 29994103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Envisioning the use of in-situ arm movement data in stroke rehabilitation: Stroke survivors' and occupational therapists' perspectives.
    Jung HT; Kim Y; Lee J; Lee SI; Choe EK
    PLoS One; 2022; 17(10):e0274142. PubMed ID: 36264782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic rehabilitation exercise task assessment of stroke patients based on wearable sensors with a lightweight multichannel 1D-CNN model.
    Wang J; Li C; Zhang B; Zhang Y; Shi L; Wang X; Zhou L; Xiong D
    Sci Rep; 2024 Aug; 14(1):19204. PubMed ID: 39160147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Post-Stroke Severity Assessment Using Novel Unsupervised Consensus Learning for Wearable and Camera-Based Sensor Datasets.
    Razfar N; Kashef R; Mohammadi F
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology.
    Tsekleves E; Paraskevopoulos IT; Warland A; Kilbride C
    Disabil Rehabil Assist Technol; 2016; 11(5):413-22. PubMed ID: 25391221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensor Fusion for Myoelectric Control Based on Deep Learning With Recurrent Convolutional Neural Networks.
    Wang W; Chen B; Xia P; Hu J; Peng Y
    Artif Organs; 2018 Sep; 42(9):E272-E282. PubMed ID: 30003559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.