These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30794188)

  • 21. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition.
    Amit M; Donyo M; Hollander D; Goren A; Kim E; Gelfman S; Lev-Maor G; Burstein D; Schwartz S; Postolsky B; Pupko T; Ast G
    Cell Rep; 2012 May; 1(5):543-56. PubMed ID: 22832277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs.
    Wu X; Hurst LD
    Mol Biol Evol; 2015 Jul; 32(7):1847-61. PubMed ID: 25771198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of eukaryotic protein coding regions using neural networks and information theory.
    Farber R; Lapedes A; Sirotkin K
    J Mol Biol; 1992 Jul; 226(2):471-9. PubMed ID: 1640461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parallel cascade recognition of exon and intron DNA sequences.
    Korenberg MJ; Lipson ED; Green JR; Solomon JE
    Ann Biomed Eng; 2002 Jan; 30(1):129-40. PubMed ID: 11874136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EGPred: prediction of eukaryotic genes using ab initio methods after combining with sequence similarity approaches.
    Issac B; Raghava GP
    Genome Res; 2004 Sep; 14(9):1756-66. PubMed ID: 15342559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intron-exon structures of eukaryotic model organisms.
    Deutsch M; Long M
    Nucleic Acids Res; 1999 Aug; 27(15):3219-28. PubMed ID: 10454621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative analyses between retained introns and constitutively spliced introns in Arabidopsis thaliana using random forest and support vector machine.
    Mao R; Raj Kumar PK; Guo C; Zhang Y; Liang C
    PLoS One; 2014; 9(8):e104049. PubMed ID: 25110928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple exon-binding sites in class II self-splicing introns.
    Jacquier A; Michel F
    Cell; 1987 Jul; 50(1):17-29. PubMed ID: 3297351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distributions of exons and introns in the human genome.
    Sakharkar MK; Chow VT; Kangueane P
    In Silico Biol; 2004; 4(4):387-93. PubMed ID: 15217358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The RNA-binding protein hnRNPLL induces a T cell alternative splicing program delineated by differential intron retention in polyadenylated RNA.
    Cho V; Mei Y; Sanny A; Chan S; Enders A; Bertram EM; Tan A; Goodnow CC; Andrews TD
    Genome Biol; 2014 Jan; 15(1):R26. PubMed ID: 24476532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ConservedPrimers 2.0: a high-throughput pipeline for comparative genome referenced intron-flanking PCR primer design and its application in wheat SNP discovery.
    You FM; Huo N; Gu YQ; Lazo GR; Dvorak J; Anderson OD
    BMC Bioinformatics; 2009 Oct; 10():331. PubMed ID: 19825183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intronic alternative splicing regulators identified by comparative genomics in nematodes.
    Kabat JL; Barberan-Soler S; McKenna P; Clawson H; Farrer T; Zahler AM
    PLoS Comput Biol; 2006 Jul; 2(7):e86. PubMed ID: 16839192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Statistical analysis and prediction of the exonic structure of human genes.
    Gelfand MS
    J Mol Evol; 1992 Sep; 35(3):239-52. PubMed ID: 1518091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A generalized topological entropy for analyzing the complexity of DNA sequences.
    Jin S; Tan R; Jiang Q; Xu L; Peng J; Wang Y; Wang Y
    PLoS One; 2014; 9(2):e88519. PubMed ID: 24533097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational searches for splicing signals.
    Zhang XH; Leslie CS; Chasin LA
    Methods; 2005 Dec; 37(4):292-305. PubMed ID: 16314258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human.
    Clark F; Thanaraj TA
    Hum Mol Genet; 2002 Feb; 11(4):451-64. PubMed ID: 11854178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scipio: using protein sequences to determine the precise exon/intron structures of genes and their orthologs in closely related species.
    Keller O; Odronitz F; Stanke M; Kollmar M; Waack S
    BMC Bioinformatics; 2008 Jun; 9():278. PubMed ID: 18554390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of exonic regions in DNA sequences using cross-correlation and noise suppression by discrete wavelet transform.
    Abbasi O; Rostami A; Karimian G
    BMC Bioinformatics; 2011 Nov; 12():430. PubMed ID: 22050630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SEGE: A database on 'intron less/single exonic' genes from eukaryotes.
    Sakharkar MK; Kangueane P; Petrov DA; Kolaskar AS; Subbiah S
    Bioinformatics; 2002 Sep; 18(9):1266-7. PubMed ID: 12217920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exons and introns characterization in nucleic acid sequences by time-frequency analysis.
    Melia US; Claria F; Gallardo JJ; Caminal P; Perera A; Vallverdu M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1783-6. PubMed ID: 21096421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.