These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
611 related articles for article (PubMed ID: 30794372)
1. LmrR: A Privileged Scaffold for Artificial Metalloenzymes. Roelfes G Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372 [TBL] [Abstract][Full Text] [Related]
2. Supramolecular Assembly of Artificial Metalloenzymes Based on the Dimeric Protein LmrR as Promiscuous Scaffold. Bos J; Browne WR; Driessen AJ; Roelfes G J Am Chem Soc; 2015 Aug; 137(31):9796-9. PubMed ID: 26214343 [TBL] [Abstract][Full Text] [Related]
3. Multidrug resistance regulators (MDRs) as scaffolds for the design of artificial metalloenzymes. Bersellini M; Roelfes G Org Biomol Chem; 2017 Apr; 15(14):3069-3073. PubMed ID: 28321451 [TBL] [Abstract][Full Text] [Related]
4. In Vivo Assembly of Artificial Metalloenzymes and Application in Whole-Cell Biocatalysis*. Chordia S; Narasimhan S; Lucini Paioni A; Baldus M; Roelfes G Angew Chem Int Ed Engl; 2021 Mar; 60(11):5913-5920. PubMed ID: 33428816 [TBL] [Abstract][Full Text] [Related]
5. Artificial Metalloenzymes based on TetR Proteins and Cu(II) for Enantioselective Friedel-Crafts Alkylation Reactions. Gutiérrez de Souza C; Bersellini M; Roelfes G ChemCatChem; 2020 Jun; 12(12):3190-3194. PubMed ID: 32612714 [TBL] [Abstract][Full Text] [Related]
6. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis. Lewis JC Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755 [TBL] [Abstract][Full Text] [Related]
7. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution. Liang AD; Serrano-Plana J; Peterson RL; Ward TR Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358 [TBL] [Abstract][Full Text] [Related]
8. A Hydroxyquinoline-Based Unnatural Amino Acid for the Design of Novel Artificial Metalloenzymes. Drienovská I; Scheele RA; Gutiérrez de Souza C; Roelfes G Chembiochem; 2020 Nov; 21(21):3077-3081. PubMed ID: 32585070 [TBL] [Abstract][Full Text] [Related]
9. Tandem Friedel-Crafts-Alkylation-Enantioselective-Protonation by Artificial Enzyme Iminium Catalysis. Leveson-Gower RB; de Boer RM; Roelfes G ChemCatChem; 2022 Apr; 14(8):e202101875. PubMed ID: 35915643 [TBL] [Abstract][Full Text] [Related]
10. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts? Reetz MT Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339 [TBL] [Abstract][Full Text] [Related]
11. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts. Oohora K; Onoda A; Hayashi T Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477 [TBL] [Abstract][Full Text] [Related]
12. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Himiyama T; Okamoto Y Molecules; 2020 Jun; 25(13):. PubMed ID: 32629938 [TBL] [Abstract][Full Text] [Related]
13. An Artificial Heme Enzyme for Cyclopropanation Reactions. Villarino L; Splan KE; Reddem E; Alonso-Cotchico L; Gutiérrez de Souza C; Lledós A; Maréchal JD; Thunnissen AWH; Roelfes G Angew Chem Int Ed Engl; 2018 Jun; 57(26):7785-7789. PubMed ID: 29719099 [TBL] [Abstract][Full Text] [Related]
14. Design of an enantioselective artificial metallo-hydratase enzyme containing an unnatural metal-binding amino acid. Drienovská I; Alonso-Cotchico L; Vidossich P; Lledós A; Maréchal JD; Roelfes G Chem Sci; 2017 Oct; 8(10):7228-7235. PubMed ID: 29081955 [TBL] [Abstract][Full Text] [Related]
15. Noncoded Amino Acids in de Novo Metalloprotein Design: Controlling Coordination Number and Catalysis. Koebke KJ; Pecoraro VL Acc Chem Res; 2019 May; 52(5):1160-1167. PubMed ID: 30933479 [TBL] [Abstract][Full Text] [Related]
16. Cofactor Binding Dynamics Influence the Catalytic Activity and Selectivity of an Artificial Metalloenzyme. Villarino L; Chordia S; Alonso-Cotchico L; Reddem E; Zhou Z; Thunnissen AMWH; Maréchal JD; Roelfes G ACS Catal; 2020 Oct; 10(20):11783-11790. PubMed ID: 33101759 [TBL] [Abstract][Full Text] [Related]
17. Unlocking Iminium Catalysis in Artificial Enzymes to Create a Friedel-Crafts Alkylase. Leveson-Gower RB; Zhou Z; Drienovská I; Roelfes G ACS Catal; 2021 Jun; 11(12):6763-6770. PubMed ID: 34168902 [TBL] [Abstract][Full Text] [Related]
18. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors. Mirts EN; Bhagi-Damodaran A; Lu Y Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643 [TBL] [Abstract][Full Text] [Related]
19. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation. DiPrimio DJ; Holland PL J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051 [TBL] [Abstract][Full Text] [Related]
20. Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes. Adachi T; Harada A; Yamaguchi H Sci Rep; 2019 Sep; 9(1):13551. PubMed ID: 31537832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]