BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 30794372)

  • 1. LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
    Roelfes G
    Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Assembly of Artificial Metalloenzymes Based on the Dimeric Protein LmrR as Promiscuous Scaffold.
    Bos J; Browne WR; Driessen AJ; Roelfes G
    J Am Chem Soc; 2015 Aug; 137(31):9796-9. PubMed ID: 26214343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Assembly of Artificial Metalloenzymes and Application in Whole-Cell Biocatalysis*.
    Chordia S; Narasimhan S; Lucini Paioni A; Baldus M; Roelfes G
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5913-5920. PubMed ID: 33428816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multidrug resistance regulators (MDRs) as scaffolds for the design of artificial metalloenzymes.
    Bersellini M; Roelfes G
    Org Biomol Chem; 2017 Apr; 15(14):3069-3073. PubMed ID: 28321451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Metalloenzymes based on TetR Proteins and Cu(II) for Enantioselective Friedel-Crafts Alkylation Reactions.
    Gutiérrez de Souza C; Bersellini M; Roelfes G
    ChemCatChem; 2020 Jun; 12(12):3190-3194. PubMed ID: 32612714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Hydroxyquinoline-Based Unnatural Amino Acid for the Design of Novel Artificial Metalloenzymes.
    Drienovská I; Scheele RA; Gutiérrez de Souza C; Roelfes G
    Chembiochem; 2020 Nov; 21(21):3077-3081. PubMed ID: 32585070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tandem Friedel-Crafts-Alkylation-Enantioselective-Protonation by Artificial Enzyme Iminium Catalysis.
    Leveson-Gower RB; de Boer RM; Roelfes G
    ChemCatChem; 2022 Apr; 14(8):e202101875. PubMed ID: 35915643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?
    Reetz MT
    Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
    Oohora K; Onoda A; Hayashi T
    Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications.
    Himiyama T; Okamoto Y
    Molecules; 2020 Jun; 25(13):. PubMed ID: 32629938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Artificial Heme Enzyme for Cyclopropanation Reactions.
    Villarino L; Splan KE; Reddem E; Alonso-Cotchico L; Gutiérrez de Souza C; Lledós A; Maréchal JD; Thunnissen AWH; Roelfes G
    Angew Chem Int Ed Engl; 2018 Jun; 57(26):7785-7789. PubMed ID: 29719099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of an enantioselective artificial metallo-hydratase enzyme containing an unnatural metal-binding amino acid.
    Drienovská I; Alonso-Cotchico L; Vidossich P; Lledós A; Maréchal JD; Roelfes G
    Chem Sci; 2017 Oct; 8(10):7228-7235. PubMed ID: 29081955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncoded Amino Acids in de Novo Metalloprotein Design: Controlling Coordination Number and Catalysis.
    Koebke KJ; Pecoraro VL
    Acc Chem Res; 2019 May; 52(5):1160-1167. PubMed ID: 30933479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cofactor Binding Dynamics Influence the Catalytic Activity and Selectivity of an Artificial Metalloenzyme.
    Villarino L; Chordia S; Alonso-Cotchico L; Reddem E; Zhou Z; Thunnissen AMWH; Maréchal JD; Roelfes G
    ACS Catal; 2020 Oct; 10(20):11783-11790. PubMed ID: 33101759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unlocking Iminium Catalysis in Artificial Enzymes to Create a Friedel-Crafts Alkylase.
    Leveson-Gower RB; Zhou Z; Drienovská I; Roelfes G
    ACS Catal; 2021 Jun; 11(12):6763-6770. PubMed ID: 34168902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation.
    DiPrimio DJ; Holland PL
    J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes.
    Adachi T; Harada A; Yamaguchi H
    Sci Rep; 2019 Sep; 9(1):13551. PubMed ID: 31537832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.