BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 30794372)

  • 21. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.
    Heinisch T; Ward TR
    Acc Chem Res; 2016 Sep; 49(9):1711-21. PubMed ID: 27529561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel-Crafts Reactions in Water.
    Wang C; Hao M; Qi Q; Dang J; Dong X; Lv S; Xiong L; Gao H; Jia G; Chen Y; Hartig JS; Li C
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3444-3449. PubMed ID: 31825550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies.
    Schwizer F; Okamoto Y; Heinisch T; Gu Y; Pellizzoni MM; Lebrun V; Reuter R; Köhler V; Lewis JC; Ward TR
    Chem Rev; 2018 Jan; 118(1):142-231. PubMed ID: 28714313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
    Lin YW
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Effect of Cofactor Binding on the Conformational Plasticity of the Biological Receptors in Artificial Metalloenzymes: The Case Study of LmrR.
    Alonso-Cotchico L; Rodríguez-Guerra Pedregal J; Lledós A; Maréchal JD
    Front Chem; 2019; 7():211. PubMed ID: 31024897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges.
    Lu Y
    Inorg Chem; 2006 Dec; 45(25):9930-40. PubMed ID: 17140190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Myoglobins engineered with artificial cofactors serve as artificial metalloenzymes and models of natural enzymes.
    Oohora K; Hayashi T
    Dalton Trans; 2021 Feb; 50(6):1940-1949. PubMed ID: 33433532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions.
    Hirota S; Lin YW
    J Biol Inorg Chem; 2018 Jan; 23(1):7-25. PubMed ID: 29218629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.
    Key HM; Dydio P; Clark DS; Hartwig JF
    Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iridium(III) polypyridine artificial metalloenzymes with tunable photophysical properties: a new platform for visible light photocatalysis in aqueous solution.
    Liu B; Zubi YS; Lewis JC
    Dalton Trans; 2023 Apr; 52(16):5034-5038. PubMed ID: 37060130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and Construction of Functional Supramolecular Metalloprotein Assemblies.
    Churchfield LA; Tezcan FA
    Acc Chem Res; 2019 Feb; 52(2):345-355. PubMed ID: 30698941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanistic insights into artificial metalloenzymes towards imine reduction.
    Feng H; Guo X; Zhang H; Chen L; Yin P; Chen C; Duan X; Zhang X; Wei M
    Phys Chem Chem Phys; 2019 Nov; 21(42):23408-23417. PubMed ID: 31625550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rationally introducing non-canonical amino acids to enhance catalytic activity of LmrR for Henry reaction.
    Wang L; Zhang M; Teng H; Wang Z; Wang S; Li P; Wu J; Yang L; Xu G
    Bioresour Bioprocess; 2024 Feb; 11(1):26. PubMed ID: 38647789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using BpyAla to generate copper artificial metalloenzymes: a catalytic and structural study.
    Klemencic E; Brewster RC; Ali HS; Richardson JM; Jarvis AG
    Catal Sci Technol; 2024 Mar; 14(6):1622-1632. PubMed ID: 38505507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
    Ward TR
    Acc Chem Res; 2011 Jan; 44(1):47-57. PubMed ID: 20949947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexibility of a biotinylated ligand in artificial metalloenzymes based on streptavidin--an insight from molecular dynamics simulations with classical and ab initio force fields.
    Panek JJ; Ward TR; Jezierska-Mazzarello A; Novic M
    J Comput Aided Mol Des; 2010 Sep; 24(9):719-32. PubMed ID: 20526651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emerging artificial metalloenzymes for asymmetric hydrogenation reactions.
    Goralski ST; Rose MJ
    Curr Opin Chem Biol; 2022 Feb; 66():102096. PubMed ID: 34879303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Periplasmic Screening for Artificial Metalloenzymes.
    Jeschek M; Panke S; Ward TR
    Methods Enzymol; 2016; 580():539-56. PubMed ID: 27586348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.