These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30794375)

  • 1. A Temperature-Gated Nanovalve Self-Assembled from DNA to Control Molecular Transport across Membranes.
    Arnott PM; Howorka S
    ACS Nano; 2019 Mar; 13(3):3334-3340. PubMed ID: 30794375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Light-Triggered Synthetic Nanopore for Controlling Molecular Transport Across Biological Membranes.
    Offenbartl-Stiegert D; Rottensteiner A; Dorey A; Howorka S
    Angew Chem Int Ed Engl; 2022 Dec; 61(52):e202210886. PubMed ID: 36318092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Biomimetic DNA-Based Membrane Gate for Protein-Controlled Transport of Cytotoxic Drugs.
    Lanphere C; Arnott PM; Jones SF; Korlova K; Howorka S
    Angew Chem Int Ed Engl; 2021 Jan; 60(4):1903-1908. PubMed ID: 33231913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Assembly of Membrane-Spanning DNA Nanopores.
    Göpfrich K; Ohmann A; Keyser UF
    Methods Mol Biol; 2021; 2186():33-48. PubMed ID: 32918728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defined Bilayer Interactions of DNA Nanopores Revealed with a Nuclease-Based Nanoprobe Strategy.
    Burns JR; Howorka S
    ACS Nano; 2018 Apr; 12(4):3263-3271. PubMed ID: 29493216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing DNA-lipid membrane interactions with a lipopeptide nanopore.
    Bessonov A; Takemoto JY; Simmel FC
    ACS Nano; 2012 Apr; 6(4):3356-63. PubMed ID: 22424398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, assembly, and characterization of membrane-spanning DNA nanopores.
    Lanphere C; Offenbartl-Stiegert D; Dorey A; Pugh G; Georgiou E; Xing Y; Burns JR; Howorka S
    Nat Protoc; 2021 Jan; 16(1):86-130. PubMed ID: 33349702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane.
    Burns JR; Seifert A; Fertig N; Howorka S
    Nat Nanotechnol; 2016 Feb; 11(2):152-6. PubMed ID: 26751170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reversibly gated protein-transporting membrane channel made of DNA.
    Dey S; Dorey A; Abraham L; Xing Y; Zhang I; Zhang F; Howorka S; Yan H
    Nat Commun; 2022 Apr; 13(1):2271. PubMed ID: 35484117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Fusion of Lipid and DNA Nanotechnology.
    Darley E; Singh JKD; Surace NA; Wickham SFJ; Baker MAB
    Genes (Basel); 2019 Dec; 10(12):. PubMed ID: 31816934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA scaffolds support stable and uniform peptide nanopores.
    Spruijt E; Tusk SE; Bayley H
    Nat Nanotechnol; 2018 Aug; 13(8):739-745. PubMed ID: 29808001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A large size-selective DNA nanopore with sensing applications.
    Thomsen RP; Malle MG; Okholm AH; Krishnan S; Bohr SS; Sørensen RS; Ries O; Vogel S; Simmel FC; Hatzakis NS; Kjems J
    Nat Commun; 2019 Dec; 10(1):5655. PubMed ID: 31827087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulating the transport of DNA through biofriendly nanochannels in a thin solid membrane.
    Wang D; Harrer S; Luan B; Stolovitzky G; Peng H; Afzali-Ardakani A
    Sci Rep; 2014 Feb; 4():3985. PubMed ID: 24496378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials.
    Birkholz O; Burns JR; Richter CP; Psathaki OE; Howorka S; Piehler J
    Nat Commun; 2018 Apr; 9(1):1521. PubMed ID: 29670084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tensegrity driven DNA nanopore.
    Mendoza O; Calmet P; Alves I; Lecomte S; Raoux M; Cullin C; Elezgaray J
    Nanoscale; 2017 Jul; 9(27):9762-9769. PubMed ID: 28678234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Stimuli-Responsive and Mechano-Actuated Biomimetic Membrane Nanopores Self-Assembled from DNA.
    Xing Y; Dorey A; Howorka S
    Adv Mater; 2023 Jul; 35(29):e2300589. PubMed ID: 37029712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes.
    Geng J; Kim K; Zhang J; Escalada A; Tunuguntla R; Comolli LR; Allen FI; Shnyrova AV; Cho KR; Munoz D; Wang YM; Grigoropoulos CP; Ajo-Franklin CM; Frolov VA; Noy A
    Nature; 2014 Oct; 514(7524):612-5. PubMed ID: 25355362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Transport through a Biomimetic DNA Channel on Live Cell Membranes.
    Lv C; Gu X; Li H; Zhao Y; Yang D; Yu W; Han D; Li J; Tan W
    ACS Nano; 2020 Nov; 14(11):14616-14626. PubMed ID: 32897687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and dynamics of membrane-spanning DNA nanopores.
    Maingi V; Burns JR; Uusitalo JJ; Howorka S; Marrink SJ; Sansom MS
    Nat Commun; 2017 Mar; 8():14784. PubMed ID: 28317903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of nanopores with ultrashort single-walled carbon nanotubes inserted in a lipid bilayer.
    Liu L; Xie J; Li T; Wu HC
    Nat Protoc; 2015 Nov; 10(11):1670-8. PubMed ID: 26426500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.