These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30794388)

  • 21. Hybrid quantum mechanics/molecular mechanics simulations with two-dimensional interpolated corrections: application to enzymatic processes.
    Ruiz-Pernía JJ; Silla E; Tuñón I; Martí S
    J Phys Chem B; 2006 Sep; 110(35):17663-70. PubMed ID: 16942112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction.
    Ishida T
    J Am Chem Soc; 2010 May; 132(20):7104-18. PubMed ID: 20426479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E. coli mutase: the efficiency of the enzyme catalysis.
    Hur S; Bruice TC
    J Am Chem Soc; 2003 May; 125(19):5964-72. PubMed ID: 12733937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field.
    Szefczyk B; Mulholland AJ; Ranaghan KE; Sokalski WA
    J Am Chem Soc; 2004 Dec; 126(49):16148-59. PubMed ID: 15584751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods.
    Hu H; Yang W
    Annu Rev Phys Chem; 2008; 59():573-601. PubMed ID: 18393679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic structure benchmark calculations of CO
    Douglas-Gallardo OA; Shepherd I; Bennie SJ; Ranaghan KE; Mulholland AJ; Vöhringer-Martinez E
    J Comput Chem; 2020 Sep; 41(24):2151-2157. PubMed ID: 32640497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring SCC-DFTB paths for mapping QM/MM reaction mechanisms.
    Woodcock HL; Hodoscek M; Brooks BR
    J Phys Chem A; 2007 Jul; 111(26):5720-8. PubMed ID: 17555303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical QM/MM studies of enzymatic pericyclic reactions.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Interdiscip Sci; 2010 Mar; 2(1):115-31. PubMed ID: 20640801
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Convergence in the QM-only and QM/MM modeling of enzymatic reactions: A case study for acetylene hydratase.
    Liao RZ; Thiel W
    J Comput Chem; 2013 Oct; 34(27):2389-97. PubMed ID: 23913757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme Reactions.
    Pan X; Yang J; Van R; Epifanovsky E; Ho J; Huang J; Pu J; Mei Y; Nam K; Shao Y
    J Chem Theory Comput; 2021 Sep; 17(9):5745-5758. PubMed ID: 34468138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-Scale Density Functional Theory Transition State Searching in Enzymes.
    Lever G; Cole DJ; Lonsdale R; Ranaghan KE; Wales DJ; Mulholland AJ; Skylaris CK; Payne MC
    J Phys Chem Lett; 2014 Nov; 5(21):3614-9. PubMed ID: 26278727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steered Molecular Dynamics Methods Applied to Enzyme Mechanism and Energetics.
    Ramírez CL; Martí MA; Roitberg AE
    Methods Enzymol; 2016; 578():123-43. PubMed ID: 27497165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The near attack conformation approach to the study of the chorismate to prephenate reaction.
    Hur S; Bruice TC
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12015-20. PubMed ID: 14523243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toward Accurate QM/MM Reaction Barriers with Large QM Regions Using Domain Based Pair Natural Orbital Coupled Cluster Theory.
    Bistoni G; Polyak I; Sparta M; Thiel W; Neese F
    J Chem Theory Comput; 2018 Jul; 14(7):3524-3531. PubMed ID: 29883118
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Just a near attack conformer for catalysis (chorismate to prephenate rearrangements in water, antibody, enzymes, and their mutants).
    Hur S; Bruice TC
    J Am Chem Soc; 2003 Sep; 125(35):10540-2. PubMed ID: 12940735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymes do what is expected (chalcone isomerase versus chorismate mutase).
    Hur S; Bruice TC
    J Am Chem Soc; 2003 Feb; 125(6):1472-3. PubMed ID: 12568595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods for enzymic reactions. II. An energy decomposition analysis.
    Titmuss SJ; Cummins PL; Rendell AP; Bliznyuk AA; Gready JE
    J Comput Chem; 2002 Nov; 23(14):1314-22. PubMed ID: 12214314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.