These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30794418)

  • 41. Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions.
    Liu Z; Zhong Y; Shafei I; Borman R; Jeong S; Chen J; Losovyj Y; Gao X; Li N; Du Y; Sarnello E; Li T; Su D; Ma W; Ye X
    Nat Commun; 2019 Mar; 10(1):1394. PubMed ID: 30918244
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Imaging Infrared Plasmon Hybridization in Doped Semiconductor Nanocrystal Dimers.
    Olafsson A; Khorasani S; Busche JA; Araujo JJ; Idrobo JC; Gamelin DR; Masiello DJ; Camden JP
    J Phys Chem Lett; 2021 Oct; 12(42):10270-10276. PubMed ID: 34652912
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals.
    Lounis SD; Runnerstrom EL; Llordés A; Milliron DJ
    J Phys Chem Lett; 2014 May; 5(9):1564-74. PubMed ID: 26270097
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Localized Surface Plasmon Coupling between Mid-IR-Resonant ITO Nanocrystals.
    Xi M; Reinhard BM
    J Phys Chem C Nanomater Interfaces; 2018 Mar; 122(10):5698-5704. PubMed ID: 30344836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thickness-dependent surface plasmon resonance of ITO nanoparticles for ITO/In-Sn bilayer structure.
    Wei W; Hong R; Jing M; Shao W; Tao C; Zhang D
    Nanotechnology; 2018 Jan; 29(1):015705. PubMed ID: 29139394
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The size-dependent ferroelectric phase transition in BaTiO₃ nanocrystals probed by surface plasmons.
    Szwarcman D; Vestler D; Markovich G
    ACS Nano; 2011 Jan; 5(1):507-15. PubMed ID: 21138326
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multifunctional Sn- and Fe-Codoped In2O3 Colloidal Nanocrystals: Plasmonics and Magnetism.
    Tandon B; Shanker GS; Nag A
    J Phys Chem Lett; 2014 Jul; 5(13):2306-11. PubMed ID: 26279551
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gelation of plasmonic metal oxide nanocrystals by polymer-induced depletion attractions.
    Saez Cabezas CA; Ong GK; Jadrich RB; Lindquist BA; Agrawal A; Truskett TM; Milliron DJ
    Proc Natl Acad Sci U S A; 2018 Sep; 115(36):8925-8930. PubMed ID: 30127030
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Starch Capped Atomically Thin CuS Nanocrystals for Efficient Photothermal Therapy.
    Zheng Z; Yu P; Cao H; Cheng M; Zhou T; Lee LE; Ulstrup J; Zhang J; Engelbrekt C; Ma L
    Small; 2021 Nov; 17(47):e2103461. PubMed ID: 34672082
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wavelength Tunable Infrared Perfect Absorption in Plasmonic Nanocrystal Monolayers.
    Chang WJ; Sakotic Z; Ware A; Green AM; Roman BJ; Kim K; Truskett TM; Wasserman D; Milliron DJ
    ACS Nano; 2024 Jan; 18(1):972-982. PubMed ID: 38117550
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals.
    Johns RW; Bechtel HA; Runnerstrom EL; Agrawal A; Lounis SD; Milliron DJ
    Nat Commun; 2016 May; 7():11583. PubMed ID: 27174681
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Controlled Synthesis and Exploration of Cu
    Kays JC; Conti CR; Margaronis A; Kuszynski JE; Strouse GF; Dennis AM
    Chem Mater; 2021 Sep; 33(18):7408-7416. PubMed ID: 35221488
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative study of the gold-enhanced fluorescence of CdSe/ZnS nanocrystals as a function of distance using an AFM probe.
    Lee SY; Nakaya K; Hayashi T; Hara M
    Phys Chem Chem Phys; 2009 Jun; 11(21):4403-9. PubMed ID: 19458845
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanoantenna structures for the detection of phonons in nanocrystals.
    Milekhin AG; Kuznetsov SA; Milekhin IA; Sveshnikova LL; Duda TA; Rodyakina EE; Latyshev AV; Dzhagan VM; Zahn DRT
    Beilstein J Nanotechnol; 2018; 9():2646-2656. PubMed ID: 30416915
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Luminescence, Plasmonic, and Magnetic Properties of Doped Semiconductor Nanocrystals.
    Pradhan N; Das Adhikari S; Nag A; Sarma DD
    Angew Chem Int Ed Engl; 2017 Jun; 56(25):7038-7054. PubMed ID: 28150912
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance.
    Rowe DJ; Jeong JS; Mkhoyan KA; Kortshagen UR
    Nano Lett; 2013 Mar; 13(3):1317-22. PubMed ID: 23413833
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals.
    Elimelech O; Liu J; Plonka AM; Frenkel AI; Banin U
    Angew Chem Int Ed Engl; 2017 Aug; 56(35):10335-10340. PubMed ID: 28639731
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrochromic-Tuned Plasmonics for Photothermal Sterile Window.
    Xu J; Zhang Y; Zhai TT; Kuang Z; Li J; Wang Y; Gao Z; Song YY; Xia XH
    ACS Nano; 2018 Jul; 12(7):6895-6903. PubMed ID: 29965721
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controllable copper deficiency in Cu2-xSe nanocrystals with tunable localized surface plasmon resonance and enhanced chemiluminescence.
    Lie SQ; Wang DM; Gao MX; Huang CZ
    Nanoscale; 2014 Sep; 6(17):10289-96. PubMed ID: 25065365
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photothermal Oxidation of Cinnamyl Alcohol with Hydrogen Peroxide Catalyzed by Gold Nanoparticle/Antimony-Doped Tin Oxide Nanocrystals.
    Inoue H; Naya SI; Akita A; Sugime H; Tada H
    Chemistry; 2022 Aug; 28(46):e202201653. PubMed ID: 35680558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.