These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30794515)

  • 21. One-Step Out-of-Place Resetting for Redirected Walking in VR.
    Zhang SH; Chen C; Zollmann S
    IEEE Trans Vis Comput Graph; 2023 Jul; 29(7):3327-3339. PubMed ID: 35275821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.
    Gaffary Y; Le Gouis B; Marchal M; Argelaguet F; Arnaldi B; Lecuyer A
    IEEE Trans Vis Comput Graph; 2017 Nov; 23(11):2372-2377. PubMed ID: 28809699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Eyes-free Target Acquisition During Walking in Immersive Mixed Reality.
    Zhou Q; Yu D; Reinoso MN; Newn J; Goncalves J; Velloso E
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3423-3433. PubMed ID: 32941144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analyses of Gait Parameters of Younger and Older Adults During (Non-)Isometric Virtual Walking.
    Janeh O; Bruder G; Steinicke F; Gulberti A; Poetter-Nerger M
    IEEE Trans Vis Comput Graph; 2018 Oct; 24(10):2663-2674. PubMed ID: 29990158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redirected Walking for Exploring Immersive Virtual Spaces With HMD: A Comprehensive Review and Recent Advances.
    Fan L; Li H; Shi M
    IEEE Trans Vis Comput Graph; 2023 Oct; 29(10):4104-4123. PubMed ID: 35639681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using perceptual illusions for redirected walking.
    Steinicke F; Bruder G
    IEEE Comput Graph Appl; 2013; 33(1):6-11. PubMed ID: 24807877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subliminal Reorientation and Repositioning in Immersive Virtual Environments using Saccadic Suppression.
    Bolte B; Lappe M
    IEEE Trans Vis Comput Graph; 2015 Apr; 21(4):545-52. PubMed ID: 26357105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial Contraction Based on Velocity Variation for Natural Walking in Virtual Reality.
    Xu SZ; Huang K; Fan CW; Zhang SH
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2444-2453. PubMed ID: 38437083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ascending and Descending in Virtual Reality: Simple and Safe System Using Passive Haptics.
    Nagao R; Matsumoto K; Narumi T; Tanikawa T; Hirose M
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1584-1593. PubMed ID: 29543176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion.
    Nilsson NC; Serafin S; Nordahl R
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):569-78. PubMed ID: 24650984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redirected Walking on Omnidirectional Treadmill.
    Wang Z; Wang Y; Yan S; Zhu Z; Zhang K; Wei H
    IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):3884-3901. PubMed ID: 37027618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virtual reality and the new psychophysics.
    de Gelder B; Kätsyri J; de Borst AW
    Br J Psychol; 2018 Aug; 109(3):421-426. PubMed ID: 29806694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scene-Motion Thresholds During Head Yaw for Immersive Virtual Environments.
    Jerald J; Whitton M; Brooks FP
    ACM Trans Appl Percept; 2012 Mar; 9(1):. PubMed ID: 25705137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impossible spaces: maximizing natural walking in virtual environments with self-overlapping architecture.
    Suma EA; Lipps Z; Finkelstein S; Krum DM; Bolas M
    IEEE Trans Vis Comput Graph; 2012 Apr; 18(4):555-64. PubMed ID: 22402682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Virtual reality assessment of walking and non-walking space in men and women with virtual reality-based tasks.
    León I; Tascón L; Ortells-Pareja JJ; Cimadevilla JM
    PLoS One; 2018; 13(10):e0204995. PubMed ID: 30278083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive Redirection: A Context-Aware Redirected Walking Meta-Strategy.
    Azmandian M; Yahata R; Grechkin T; Rosenberg ES
    IEEE Trans Vis Comput Graph; 2022 May; 28(5):2277-2287. PubMed ID: 35175921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Locomotor circumvention strategies in response to static pedestrians in a virtual and physical environment.
    Bühler MA; Lamontagne A
    Gait Posture; 2019 Feb; 68():201-206. PubMed ID: 30500732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gaze direction affects walking speed when using a self-paced treadmill with a virtual reality environment.
    Jeschke AM; de Groot LE; van der Woude LHV; Oude Lansink ILB; van Kouwenhove L; Hijmans JM
    Hum Mov Sci; 2019 Oct; 67():102498. PubMed ID: 31330475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Locomotive Recalibration and Prism Adaptation of Children and Teens in Immersive Virtual Environments.
    Adams H; Narasimham G; Rieser J; Creem-Regehr S; Stefanucci J; Bodenheimer B
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1408-1417. PubMed ID: 29543159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.