These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 30794697)
41. The Lrp transcriptional factor of an entomopathogenic bacterium, Xenorhabdus hominickii, activates non-ribosomal peptide synthetases to suppress insect immunity. Jin G; Kim IH; Kim Y Dev Comp Immunol; 2024 Feb; 151():105101. PubMed ID: 38000489 [TBL] [Abstract][Full Text] [Related]
42. A new mechanism for the control of phenoloxidase activity: inhibition and complex formation with quinone isomerase. Sugumaran M; Nellaiappan K; Valivittan K Arch Biochem Biophys; 2000 Jul; 379(2):252-60. PubMed ID: 10898942 [TBL] [Abstract][Full Text] [Related]
44. Variable virulence phenotype of Xenorhabdus bovienii (γ-Proteobacteria: Enterobacteriaceae) in the absence of their vector hosts. McMullen JG; McQuade R; Ogier JC; Pagès S; Gaudriault S; Patricia Stock S Microbiology (Reading); 2017 Apr; 163(4):510-522. PubMed ID: 28430102 [TBL] [Abstract][Full Text] [Related]
45. Identification of Arylphorin interacting with the insecticidal protein PirAB from Xenorhabdus nematophila by yeast two-hybrid system. NanGong Z; Guo X; Yang Q; Song P; Wang Q; Parajulee MN World J Microbiol Biotechnol; 2020 Mar; 36(4):56. PubMed ID: 32211973 [TBL] [Abstract][Full Text] [Related]
46. Biochemical characteristics of immune-associated phospholipase A(2) and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. Shrestha S; Kim Y J Microbiol; 2009 Dec; 47(6):774-82. PubMed ID: 20127473 [TBL] [Abstract][Full Text] [Related]
47. Rhabdopeptides as insect-specific virulence factors from entomopathogenic bacteria. Reimer D; Cowles KN; Proschak A; Nollmann FI; Dowling AJ; Kaiser M; ffrench-Constant R; Goodrich-Blair H; Bode HB Chembiochem; 2013 Oct; 14(15):1991-7. PubMed ID: 24038745 [TBL] [Abstract][Full Text] [Related]
48. An entomopathogenic bacterium, Xenorhabdus hominickii ANU101, produces oxindole and suppresses host insect immune response by inhibiting eicosanoid biosynthesis. Sadekuzzaman M; Park Y; Lee S; Kim K; Jung JK; Kim Y J Invertebr Pathol; 2017 May; 145():13-22. PubMed ID: 28302381 [TBL] [Abstract][Full Text] [Related]
49. Type 1 fimbriae of insecticidal bacterium Xenorhabdus nematophila is necessary for growth and colonization of its symbiotic host nematode Steinernema carpocapsiae. Chandra H; Khandelwal P; Khattri A; Banerjee N Environ Microbiol; 2008 May; 10(5):1285-95. PubMed ID: 18279345 [TBL] [Abstract][Full Text] [Related]
50. Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against Aedes aegypti (Diptera: Culicidae). Luiz Rosa da Silva J; Undurraga Schwalm F; Eugênio Silva C; da Costa M; Heermann R; Santos da Silva O J Econ Entomol; 2017 Apr; 110(2):378-385. PubMed ID: 28062794 [TBL] [Abstract][Full Text] [Related]
51. Insecticidal activity of two proteases against Spodoptera frugiperda larvae infected with recombinant baculoviruses. Gramkow AW; Perecmanis S; Sousa RL; Noronha EF; Felix CR; Nagata T; Ribeiro BM Virol J; 2010 Jun; 7():143. PubMed ID: 20587066 [TBL] [Abstract][Full Text] [Related]
52. Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using molecular techniques. Jing DP; Guo JF; Jiang YY; Zhao JZ; Sethi A; He KL; Wang ZY Insect Sci; 2020 Aug; 27(4):780-790. PubMed ID: 31209955 [TBL] [Abstract][Full Text] [Related]
53. Pyrimidine nucleoside salvage confers an advantage to Xenorhabdus nematophila in its host interactions. Orchard SS; Goodrich-Blair H Appl Environ Microbiol; 2005 Oct; 71(10):6254-9. PubMed ID: 16204546 [TBL] [Abstract][Full Text] [Related]
54. FliZ, a flagellar regulator, is at the crossroads between motility, haemolysin expression and virulence in the insect pathogenic bacterium Xenorhabdus. Lanois A; Jubelin G; Givaudan A Mol Microbiol; 2008 Apr; 68(2):516-33. PubMed ID: 18383616 [TBL] [Abstract][Full Text] [Related]
55. Pathogenicity of bacterium, Xenorhabdus nematophila isolated from entomopathogenic nematode (Steinernema carpocapsae) and its secretion against Galleria mellonella larvae. Mahar AN; Munir M; Elawad S; Gowen SR; Hague NG J Zhejiang Univ Sci B; 2005 Jun; 6(6):457-63. PubMed ID: 15909327 [TBL] [Abstract][Full Text] [Related]
56. The global regulator Lrp contributes to mutualism, pathogenesis and phenotypic variation in the bacterium Xenorhabdus nematophila. Cowles KN; Cowles CE; Richards GR; Martens EC; Goodrich-Blair H Cell Microbiol; 2007 May; 9(5):1311-23. PubMed ID: 17223926 [TBL] [Abstract][Full Text] [Related]
57. Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila. Park D; Ciezki K; van der Hoeven R; Singh S; Reimer D; Bode HB; Forst S Mol Microbiol; 2009 Sep; 73(5):938-49. PubMed ID: 19682255 [TBL] [Abstract][Full Text] [Related]
58. Identification and functional analysis of promoters of heat-shock genes from the fall armyworm, Spodoptera frugiperda. Chen X; Tan A; Palli SR Sci Rep; 2020 Feb; 10(1):2363. PubMed ID: 32047182 [TBL] [Abstract][Full Text] [Related]
59. Temperature effects on Korean entomopathogenic nematodes, Steinernema glaseri and S. longicaudum, and their symbiotic bacteria. Hang TD; Choo HY; Lee DW; Lee SM; Kaya HK; Park CG J Microbiol Biotechnol; 2007 Mar; 17(3):420-7. PubMed ID: 18050945 [TBL] [Abstract][Full Text] [Related]
60. Identification of an entomopathogenic bacterium, Xenorhabdus ehlersii KSY, from Steinernema longicaudum GNUS101 and its immunosuppressive activity against insect host by inhibiting eicosanoid biosynthesis. Kim H; Keum S; Hasan A; Kim H; Jung Y; Lee D; Kim Y J Invertebr Pathol; 2018 Nov; 159():6-17. PubMed ID: 30389324 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]