These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 30794698)
1. Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin. Berg JS; Jézéquel D; Duverger A; Lamy D; Laberty-Robert C; Miot J PLoS One; 2019; 14(2):e0212787. PubMed ID: 30794698 [TBL] [Abstract][Full Text] [Related]
2. Rapid pyritization in the presence of a sulfur/sulfate-reducing bacterial consortium. Berg JS; Duverger A; Cordier L; Laberty-Robert C; Guyot F; Miot J Sci Rep; 2020 May; 10(1):8264. PubMed ID: 32427954 [TBL] [Abstract][Full Text] [Related]
3. Identification of sulfur-cycle prokaryotes in a low-sulfate lake (Lake Pavin) using aprA and 16S rRNA gene markers. Biderre-Petit C; Boucher D; Kuever J; Alberic P; Jézéquel D; Chebance B; Borrel G; Fonty G; Peyret P Microb Ecol; 2011 Feb; 61(2):313-27. PubMed ID: 21107833 [TBL] [Abstract][Full Text] [Related]
4. Ecology of sulfate-reducing bacteria in an iron-dominated, mining-impacted freshwater sediment. Ramamoorthy S; Piotrowski JS; Langner HW; Holben WE; Morra MJ; Rosenzweig RF J Environ Qual; 2009; 38(2):675-84. PubMed ID: 19244488 [TBL] [Abstract][Full Text] [Related]
5. A pan-genomic approach reveals novel Sulfurimonas clade in the ferruginous meromictic Lake Pavin. Biderre-Petit C; Courtine D; Hennequin C; Galand PE; Bertilsson S; Debroas D; Monjot A; Lepère C; Divne AM; Hochart C Mol Ecol Resour; 2024 Apr; 24(3):e13923. PubMed ID: 38189173 [TBL] [Abstract][Full Text] [Related]
6. Sulfur cycling in freshwater sediments: A cryptic driving force of iron deposition and phosphorus mobilization. Wu S; Zhao Y; Chen Y; Dong X; Wang M; Wang G Sci Total Environ; 2019 Mar; 657():1294-1303. PubMed ID: 30677896 [TBL] [Abstract][Full Text] [Related]
8. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Satoh H; Odagiri M; Ito T; Okabe S Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714 [TBL] [Abstract][Full Text] [Related]
10. Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno. Berg JS; Michellod D; Pjevac P; Martinez-Perez C; Buckner CR; Hach PF; Schubert CJ; Milucka J; Kuypers MM Environ Microbiol; 2016 Dec; 18(12):5288-5302. PubMed ID: 27768826 [TBL] [Abstract][Full Text] [Related]
11. Succession of sulfur bacteria during decomposition of cyanobacterial bloom biomass in the shallow Lake Nanhu: An ex situ mesocosm study. Chen M; Jiao YY; Zhang YQ; Krumholz LR; Ren JX; Li ZH; Zhao LY; Song HT; Lu JD Chemosphere; 2020 Oct; 256():127101. PubMed ID: 32450355 [TBL] [Abstract][Full Text] [Related]
12. Stable isotope biogeochemistry of the sulfur cycle in modern marine sediments: I. Seasonal dynamics in a temperate intertidal sandy surface sediment. Böttcher M; Hespenheide B; Brumsack HJ; Bosselmann K Isotopes Environ Health Stud; 2004 Dec; 40(4):267-83. PubMed ID: 15621745 [TBL] [Abstract][Full Text] [Related]
13. Importance of different physiological groups of iron reducing microorganisms in an acidic mining lake remediation experiment. Porsch K; Meier J; Kleinsteuber S; Wendt-Potthoff K Microb Ecol; 2009 May; 57(4):701-17. PubMed ID: 19277769 [TBL] [Abstract][Full Text] [Related]
14. Iron and nitrogen cycling, bacterioplankton community composition and mineral transformations involving phosphorus stabilisation in the ferruginous hypolimnion of a post-mining lake. Petrash DA; Jan J; Sirová D; Osafo NO; Borovec J Environ Sci Process Impacts; 2018 Oct; 20(10):1414-1426. PubMed ID: 30199079 [TBL] [Abstract][Full Text] [Related]
15. Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Grigoryan AA; Cornish SL; Buziak B; Lin S; Cavallaro A; Arensdorf JJ; Voordouw G Appl Environ Microbiol; 2008 Jul; 74(14):4324-35. PubMed ID: 18502934 [TBL] [Abstract][Full Text] [Related]
16. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions. Kwon MJ; O'Loughlin EJ; Boyanov MI; Brulc JM; Johnston ER; Kemner KM; Antonopoulos DA PLoS One; 2016; 11(1):e0146689. PubMed ID: 26800443 [TBL] [Abstract][Full Text] [Related]
17. Vertical distribution of major sulfate-reducing bacteria in a shallow eutrophic meromictic lake. Kubo K; Kojima H; Fukui M Syst Appl Microbiol; 2014 Oct; 37(7):510-9. PubMed ID: 25034383 [TBL] [Abstract][Full Text] [Related]
18. [Activity and structure of the sulfate-reducing bacterial community in the sediments of the southern part of Lake Baikal]. Pimenov NV; Zakharova EE; Briukhanov AL; Korneeva VA; Kuznetsov BB; Turova TP; Pogodaeva TV; Kalmychkov GV; Zemskaia TI Mikrobiologiia; 2014; 83(2):180-90. PubMed ID: 25423722 [TBL] [Abstract][Full Text] [Related]
19. Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Straub KL; Schink B Appl Environ Microbiol; 2004 Oct; 70(10):5744-9. PubMed ID: 15466509 [TBL] [Abstract][Full Text] [Related]
20. Formation of Fe-sulfides in cultures of sulfate-reducing bacteria. Gramp JP; Bigham JM; Jones FS; Tuovinen OH J Hazard Mater; 2010 Mar; 175(1-3):1062-7. PubMed ID: 19962824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]