These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 30794698)

  • 21. Microbial carbon, sulfur, iron, and nitrogen cycling linked to the potential remediation of a meromictic acidic pit lake.
    Ayala-Muñoz D; Macalady JL; Sánchez-España J; Falagán C; Couradeau E; Burgos WD
    ISME J; 2022 Dec; 16(12):2666-2679. PubMed ID: 36123522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia).
    Sorokin DY; Rusanov II; Pimenov NV; Tourova TP; Abbas B; Muyzer G
    FEMS Microbiol Ecol; 2010 Aug; 73(2):278-90. PubMed ID: 20500526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon and Sulfur Cycling below the Chemocline in a Meromictic Lake and the Identification of a Novel Taxonomic Lineage in the FCB Superphylum, Candidatus Aegiribacteria.
    Hamilton TL; Bovee RJ; Sattin SR; Mohr W; Gilhooly WP; Lyons TW; Pearson A; Macalady JL
    Front Microbiol; 2016; 7():598. PubMed ID: 27199928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges.
    Bravo AG; Bouchet S; Guédron S; Amouroux D; Dominik J; Zopfi J
    Water Res; 2015 Sep; 80():245-55. PubMed ID: 26005785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes.
    Meier J; Piva A; Fortin D
    FEMS Microbiol Ecol; 2012 Jan; 79(1):69-84. PubMed ID: 22066948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system.
    Labrenz M; Banfield JF
    Microb Ecol; 2004 Apr; 47(3):205-17. PubMed ID: 14994175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer.
    Hellal J; Guédron S; Huguet L; Schäfer J; Laperche V; Joulian C; Lanceleur L; Burnol A; Ghestem JP; Garrido F; Battaglia-Brunet F
    J Contam Hydrol; 2015 Sep; 180():56-68. PubMed ID: 26275395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Sulfur and iron cycling bacteria in low-sulfate meromictic Lake Kuznechikha].
    Gorlenko VM; Vainshtein MB; Chebotarev EN
    Mikrobiologiia; 1980; 49(5):804-12. PubMed ID: 6777648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphate removal and sulfate reduction in a denitrification reactor packed with iron and wood as electron donors.
    Yamashita T; Yamamoto-Ikemoto R
    Water Sci Technol; 2008; 58(7):1405-13. PubMed ID: 18957753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments.
    Habicht KS; Canfield DE
    Geochim Cosmochim Acta; 1997 Dec; 61(24):5351-61. PubMed ID: 11541664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic evidence for sulfur intermediates as new biogeochemical hubs in a model aquatic microbial ecosystem.
    Vigneron A; Cruaud P; Culley AI; Couture RM; Lovejoy C; Vincent WF
    Microbiome; 2021 Feb; 9(1):46. PubMed ID: 33593438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic potential of microbial communities from ferruginous sediments.
    Vuillemin A; Horn F; Friese A; Winkel M; Alawi M; Wagner D; Henny C; Orsi WD; Crowe SA; Kallmeyer J
    Environ Microbiol; 2018 Dec; 20(12):4297-4313. PubMed ID: 29968357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Composition and key-influencing factors of bacterial communities active in sulfur cycling of soda lake sediments.
    Li X; Yang M; Mu T; Miao D; Liu J; Xing J
    Arch Microbiol; 2022 May; 204(6):317. PubMed ID: 35567694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfate-reducing bacterial community structure and their contribution to carbon mineralization in a wastewater biofilm growing under microaerophilic conditions.
    Okabe S; Ito T; Satoh H
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):322-34. PubMed ID: 12879306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactive iron in marine sediments.
    Canfield DE
    Geochim Cosmochim Acta; 1989; 53():619-32. PubMed ID: 11539783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinctive Patterns in the Taxonomical Resolution of Bacterioplankton in the Sediment and Pore Waters of Contrasted Freshwater Lakes.
    Keshri J; Pradeep Ram AS; Sime-Ngando T
    Microb Ecol; 2018 Apr; 75(3):662-673. PubMed ID: 28920165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers.
    Dar SA; Yao L; van Dongen U; Kuenen JG; Muyzer G
    Appl Environ Microbiol; 2007 Jan; 73(2):594-604. PubMed ID: 17098925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatio-temporal dynamics of sulfur bacteria during oxic--anoxic regime shifts in a seasonally stratified lake.
    Diao M; Huisman J; Muyzer G
    FEMS Microbiol Ecol; 2018 Apr; 94(4):. PubMed ID: 29528404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms.
    Villahermosa D; Corzo A; Garcia-Robledo E; González JM; Papaspyrou S
    PLoS One; 2016; 11(2):e0149096. PubMed ID: 26872267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.