These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30794700)

  • 1. Joint specific power production in cycling: The effect of cadence and intensity.
    Aasvold LO; Ettema G; Skovereng K
    PLoS One; 2019; 14(2):e0212781. PubMed ID: 30794700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the effect of changing handgrip position on joint specific power and cycling kinematics in recreational and professional cyclists.
    Skovereng K; Aasvold LO; Ettema G
    PLoS One; 2020; 15(8):e0237768. PubMed ID: 32813742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint-specific power production during submaximal and maximal cycling.
    Elmer SJ; Barratt PR; Korff T; Martin JC
    Med Sci Sports Exerc; 2011 Oct; 43(10):1940-7. PubMed ID: 21448081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is a joint moment-based cost function associated with preferred cycling cadence?
    Marsh AP; Martin PE; Sanderson DJ
    J Biomech; 2000 Feb; 33(2):173-80. PubMed ID: 10653030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of chainring ovality on joint power during cycling at different workloads and cadences.
    Strutzenberger G; Wunsch T; Kroell J; Dastl J; Schwameder H
    Sports Biomech; 2014 Jun; 13(2):97-108. PubMed ID: 25122995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygenation, local muscle oxygen consumption and joint specific power in cycling: the effect of cadence at a constant external work rate.
    Skovereng K; Ettema G; van Beekvelt MC
    Eur J Appl Physiol; 2016 Jun; 116(6):1207-17. PubMed ID: 27126859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of crank length on joint-specific power during maximal cycling.
    Barratt PR; Korff T; Elmer SJ; Martin JC
    Med Sci Sports Exerc; 2011 Sep; 43(9):1689-97. PubMed ID: 21311357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Mechanics of Seated and Nonseated Cycling at Very-High-Power Output: A Joint-Level Analysis.
    Wilkinson RD; Lichtwark GA; Cresswell AG
    Med Sci Sports Exerc; 2020 Jul; 52(7):1585-1594. PubMed ID: 31996561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intra-limb coordinative adaptations in cycling.
    Sides D; Wilson C
    Sports Biomech; 2012 Mar; 11(1):1-9. PubMed ID: 22518940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local muscle oxygen consumption related to external and joint specific power.
    Skovereng K; Ettema G; van Beekvelt M
    Hum Mov Sci; 2016 Feb; 45():161-71. PubMed ID: 26650852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint-specific power absorption during eccentric cycling.
    Elmer SJ; Madigan ML; LaStayo PC; Martin JC
    Clin Biomech (Bristol, Avon); 2010 Feb; 25(2):154-8. PubMed ID: 19931956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Power production strategy during steady-state cycling is cadence dependent.
    Yamaguchi Y; Otsuka M; Wada N; Nishiyama T
    J Biomech; 2023 Sep; 158():111772. PubMed ID: 37643551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence.
    Sanderson DJ; Martin PE; Honeyman G; Keefer J
    J Electromyogr Kinesiol; 2006 Dec; 16(6):642-9. PubMed ID: 16377214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the hip-ankle synergy in short-term maximal cycling.
    Burnie L; Barratt P; Davids K; Worsfold P; Wheat J
    J Biomech; 2022 Sep; 142():111268. PubMed ID: 36030635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint-specific power-pedaling rate relationships during maximal cycling.
    McDaniel J; Behjani NS; Elmer SJ; Brown NA; Martin JC
    J Appl Biomech; 2014 Jun; 30(3):423-30. PubMed ID: 24610335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity and reliability of the Polar S710 mobile cycling powermeter.
    Millet GP; Tronche C; Fuster N; Bentley DJ; Candau R
    Int J Sports Med; 2003 Apr; 24(3):156-61. PubMed ID: 12740731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Cadence on Shank Muscle Oxygen Consumption and Deoxygenation in Relation to Joint Specific Power and Cycling Kinematics.
    Skovereng K; Ettema G; van Beekvelt M
    PLoS One; 2017; 12(1):e0169573. PubMed ID: 28060894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in joint power distribution in high and low lactate threshold cyclists.
    Leary BK; Burton HM; Vardarli E; Wolfe AS; Crawford CK; Akins JD; Coyle EF
    Eur J Appl Physiol; 2021 Jan; 121(1):231-238. PubMed ID: 33025231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower extremity general muscle moment patterns in healthy individuals during recumbent cycling.
    Gregor SM; Perell KL; Rushatakankovit S; Miyamoto E; Muffoletto R; Gregor RJ
    Clin Biomech (Bristol, Avon); 2002 Feb; 17(2):123-9. PubMed ID: 11832262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noncircular Chainrings Do Not Influence Maximum Cycling Power.
    Leong CH; Elmer SJ; Martin JC
    J Appl Biomech; 2017 Dec; 33(6):410-418. PubMed ID: 28605248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.