These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 30795600)
1. DNA Replication Through Strand Displacement During Lagging Strand DNA Synthesis in Giannattasio M; Branzei D Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30795600 [TBL] [Abstract][Full Text] [Related]
2. Processing of eukaryotic Okazaki fragments by redundant nucleases can be uncoupled from ongoing DNA replication in vivo. Kahli M; Osmundson JS; Yeung R; Smith DJ Nucleic Acids Res; 2019 Feb; 47(4):1814-1822. PubMed ID: 30541106 [TBL] [Abstract][Full Text] [Related]
3. Post-replicative nick translation occurs on the lagging strand during prolonged depletion of DNA ligase I in Saccharomyces cerevisiae. Koussa NC; Smith DJ G3 (Bethesda); 2021 Aug; 11(8):. PubMed ID: 34849819 [TBL] [Abstract][Full Text] [Related]
4. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Smith DJ; Whitehouse I Nature; 2012 Mar; 483(7390):434-8. PubMed ID: 22419157 [TBL] [Abstract][Full Text] [Related]
5. An alternative pathway for Okazaki fragment processing: resolution of fold-back flaps by Pif1 helicase. Pike JE; Henry RA; Burgers PM; Campbell JL; Bambara RA J Biol Chem; 2010 Dec; 285(53):41712-23. PubMed ID: 20959454 [TBL] [Abstract][Full Text] [Related]
6. Roles for DNA polymerase δ in initiating and terminating leading strand DNA replication. Zhou ZX; Lujan SA; Burkholder AB; Garbacz MA; Kunkel TA Nat Commun; 2019 Sep; 10(1):3992. PubMed ID: 31488849 [TBL] [Abstract][Full Text] [Related]
7. Separable, Ctf4-mediated recruitment of DNA Polymerase α for initiation of DNA synthesis at replication origins and lagging-strand priming during replication elongation. Porcella SY; Koussa NC; Tang CP; Kramer DN; Srivastava P; Smith DJ PLoS Genet; 2020 May; 16(5):e1008755. PubMed ID: 32379761 [TBL] [Abstract][Full Text] [Related]
8. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Yu C; Gan H; Han J; Zhou ZX; Jia S; Chabes A; Farrugia G; Ordog T; Zhang Z Mol Cell; 2014 Nov; 56(4):551-63. PubMed ID: 25449133 [TBL] [Abstract][Full Text] [Related]
9. Flexibility of eukaryotic Okazaki fragment maturation through regulated strand displacement synthesis. Stith CM; Sterling J; Resnick MA; Gordenin DA; Burgers PM J Biol Chem; 2008 Dec; 283(49):34129-40. PubMed ID: 18927077 [TBL] [Abstract][Full Text] [Related]
10. Polymerase dynamics at the eukaryotic DNA replication fork. Burgers PM J Biol Chem; 2009 Feb; 284(7):4041-5. PubMed ID: 18835809 [TBL] [Abstract][Full Text] [Related]
11. Chromatin Constrains the Initiation and Elongation of DNA Replication. Devbhandari S; Jiang J; Kumar C; Whitehouse I; Remus D Mol Cell; 2017 Jan; 65(1):131-141. PubMed ID: 27989437 [TBL] [Abstract][Full Text] [Related]
12. Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork. Schauer GD; O'Donnell ME Proc Natl Acad Sci U S A; 2017 Jan; 114(4):675-680. PubMed ID: 28069954 [TBL] [Abstract][Full Text] [Related]
13. Reconstituted Okazaki fragment processing indicates two pathways of primer removal. Rossi ML; Bambara RA J Biol Chem; 2006 Sep; 281(36):26051-61. PubMed ID: 16837458 [TBL] [Abstract][Full Text] [Related]
14. Processive Activity of Replicative DNA Polymerases in the Replisome of Live Eukaryotic Cells. Kapadia N; El-Hajj ZW; Zheng H; Beattie TR; Yu A; Reyes-Lamothe R Mol Cell; 2020 Oct; 80(1):114-126.e8. PubMed ID: 32916094 [TBL] [Abstract][Full Text] [Related]
15. How the Eukaryotic Replisome Achieves Rapid and Efficient DNA Replication. Yeeles JTP; Janska A; Early A; Diffley JFX Mol Cell; 2017 Jan; 65(1):105-116. PubMed ID: 27989442 [TBL] [Abstract][Full Text] [Related]
16. Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress. Gan H; Yu C; Devbhandari S; Sharma S; Han J; Chabes A; Remus D; Zhang Z Mol Cell; 2017 Oct; 68(2):446-455.e3. PubMed ID: 29033319 [TBL] [Abstract][Full Text] [Related]
17. Limiting DNA polymerase delta alters replication dynamics and leads to a dependence on checkpoint activation and recombination-mediated DNA repair. Koussa NC; Smith DJ PLoS Genet; 2021 Jan; 17(1):e1009322. PubMed ID: 33493195 [TBL] [Abstract][Full Text] [Related]
18. The 3'-->5' exonuclease of DNA polymerase delta can substitute for the 5' flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Jin YH; Obert R; Burgers PM; Kunkel TA; Resnick MA; Gordenin DA Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5122-7. PubMed ID: 11309502 [TBL] [Abstract][Full Text] [Related]
19. DNA polymerase δ subunit Pol32 binds histone H3-H4 and couples nucleosome assembly with Okazaki fragment processing. Shi G; Yang C; Wu J; Lei Y; Hu J; Feng J; Li Q Sci Adv; 2024 Aug; 10(32):eado1739. PubMed ID: 39121223 [TBL] [Abstract][Full Text] [Related]
20. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. Georgescu RE; Schauer GD; Yao NY; Langston LD; Yurieva O; Zhang D; Finkelstein J; O'Donnell ME Elife; 2015 Apr; 4():e04988. PubMed ID: 25871847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]