These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30795616)

  • 1.
    Lü X; Hao P; Xie G; Duan J; Liu B
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30795616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A colorimetric sensor array for detection of triacetone triperoxide vapor.
    Lin H; Suslick KS
    J Am Chem Soc; 2010 Nov; 132(44):15519-21. PubMed ID: 20949933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical and experimental study of sensing triacetone triperoxide (TATP) explosive through nanostructured TiO₂ substrate.
    Ray RS; Sarma B; Mohanty S; Misra M
    Talanta; 2014 Jan; 118():304-11. PubMed ID: 24274301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Triacetone Triperoxide (TATP) Precursors with an Array of Sensors Based on MoS₂/RGO Composites.
    Sun Q; Wu Z; Duan H; Jia D
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30871286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast, sensitive, selective and reversible fluorescence monitoring of TATP in a vapor phase.
    An Y; Xu X; Liu K; An X; Shang C; Wang G; Liu T; Li H; Peng H; Fang Y
    Chem Commun (Camb); 2019 Jan; 55(7):941-944. PubMed ID: 30601477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive determination of triacetone triperoxide explosives using electrogenerated chemiluminescence.
    Parajuli S; Miao W
    Anal Chem; 2013 Aug; 85(16):8008-15. PubMed ID: 23885721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titanium dioxide nanoparticles-based colorimetric sensors for determination of hydrogen peroxide and triacetone triperoxide (TATP).
    Gökdere B; Üzer A; Durmazel S; Erçağ E; Apak R
    Talanta; 2019 Sep; 202():402-410. PubMed ID: 31171201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silica Nanoparticle/Fluorescent Dye Assembly Capable of Ultrasensitively Detecting Airborne Triacetone Triperoxide: Proof-of-Concept Detection of Improvised Explosive Devices in the Workroom.
    Revilla-Cuesta A; Abajo-Cuadrado I; Medrano M; Salgado MM; Avella M; Rodríguez MT; García-Calvo J; Torroba T
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):32024-32036. PubMed ID: 37340706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Triacetone Triperoxide (TATP) and Hexamethylene Triperoxide Diamine (HMTD) from the Gas Phase with Differential Ion Mobility Spectrometry (DMS).
    Maziejuk M; Szyposzyńska M; Spławska A; Wiśnik-Sawka M; Ceremuga M
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards maintaining canine training aid integrity: Effects of environmental factors and operational use on the triacetone triperoxide polymer odor capture-and-release system.
    Cropper E; Riley P; Simon AG
    J Forensic Sci; 2024 May; 69(3):888-904. PubMed ID: 38528830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive detection of explosive triacetone triperoxide by an In2O3 sensor.
    Zhang WH; Zhang WD; Chen LY
    Nanotechnology; 2010 Aug; 21(31):315502. PubMed ID: 20634566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of triacetone triperoxide (TATP) traces using passive samplers in combination with GC-MS and GC-PCI-MS/MS methods.
    Hehet P; Pütz M; Kämmerer B; Umlauf G; Geiss O; Caetano JGN; Karaghiosoff K; Wende M
    Forensic Sci Int; 2023 Jul; 348():111673. PubMed ID: 37031011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of triacetone triperoxide by thermal decomposition peroxy radical chemical amplification coupled to cavity ring-down spectroscopy.
    Taha YM; Saowapon MT; Osthoff HD
    Anal Bioanal Chem; 2018 Jul; 410(17):4203-4212. PubMed ID: 29725732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ trace detection of peroxide explosives by desorption electrospray ionization and desorption atmospheric pressure chemical ionization.
    Cotte-Rodríguez I; Hernandez-Soto H; Chen H; Cooks RG
    Anal Chem; 2008 Mar; 80(5):1512-9. PubMed ID: 18247583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic headspace generation and quantitation of triacetone triperoxide vapor.
    Giordano BC; Lubrano AL; Field CR; Collins GE
    J Chromatogr A; 2014 Feb; 1331():38-43. PubMed ID: 24508355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iodine-mediated photoinduced autoinductive tandem chromogenic system for visual colorimetric detection of triacetone triperoxide explosive.
    Wang J; Cui Y; Lin Y; He Y
    Anal Sci; 2023 Jun; 39(6):935-943. PubMed ID: 36849758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone.
    Dunayevskiy I; Tsekoun A; Prasanna M; Go R; Patel CK
    Appl Opt; 2007 Sep; 46(25):6397-404. PubMed ID: 17805380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Triacetone Triperoxide and Hexamethylene Triperoxide Diamine in Various Matrices Using Infrared Spectroscopy.
    Vodochodský O; Jalový Z; Matyáš R; Novotná M
    Appl Spectrosc; 2019 Feb; 73(2):195-202. PubMed ID: 30345789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a molecularly imprinted polymer-based sensor for the electrochemical determination of triacetone triperoxide (TATP).
    Mamo SK; Gonzalez-Rodriguez J
    Sensors (Basel); 2014 Dec; 14(12):23269-82. PubMed ID: 25490589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel array of chemiluminescence sensors for sensitive, rapid and high-throughput detection of explosive triacetone triperoxide at the scene.
    Li X; Zhang Z; Tao L
    Biosens Bioelectron; 2013 Sep; 47():356-60. PubMed ID: 23608537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.