These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30795642)

  • 1. Rheological Property Criteria for Buildable 3D Printing Concrete.
    Jeong H; Han SJ; Choi SH; Lee YJ; Yi ST; Kim KS
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30795642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Buildability and Mechanical Properties of 3D Printed Concrete.
    Joh C; Lee J; Bui TQ; Park J; Yang IH
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33147741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric Conformability of 3D Concrete Printing Mixtures from a Rheological Perspective.
    Miranda LRM; Jovanović B; Lesage K; De Schutter G
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Study on Time-Dependent Changes in Rheological Properties and Flow Rate of 3D Concrete Printing Materials.
    Lee H; Seo EA; Kim WW; Moon JH
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Accelerator Dosage on Fresh Concrete Properties and on Interlayer Strength in Shotcrete 3D Printing.
    Dressler I; Freund N; Lowke D
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31947531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Material Fresh Properties and Process Parameters on Buildability and Interlayer Adhesion of 3D Printed Concrete.
    Panda B; Noor Mohamed NA; Paul SC; Bhagath Singh G; Tan MJ; Šavija B
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31277393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air Bubbles as an Admixture for Printable Concrete: A Review of the Rheological Effect of Entrained Air.
    Eugenin C; Navarrete I; Brevis W; Lopez M
    3D Print Addit Manuf; 2022 Feb; 9(1):64-80. PubMed ID: 36660134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Workability and Structuration Rate of Locally Developed 3D Printing Concrete Using Conventional Methods.
    Ahmed S; Yehia S
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injection 3D Concrete Printing (I3DCP): Basic Principles and Case Studies.
    Hack N; Dressler I; Brohmann L; Gantner S; Lowke D; Kloft H
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32121582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nailing of Layers: A Promising Way to Reinforce Concrete 3D Printing Structures.
    Perrot A; Jacquet Y; Rangeard D; Courteille E; Sonebi M
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32224962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automation in the Construction of a 3D-Printed Concrete Wall with the Use of a Lintel Gripper.
    Hoffmann M; Skibicki S; Pankratow P; Zieliński A; Pajor M; Techman M
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32290384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sewing Concrete Device-Combining In-Line Rheology Control and Reinforcement System for 3D Concrete Printing.
    Jacquet Y; Perrot A
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Synergistic Effect of Ester-Ether Copolymerization Thixo-Tropic Superplasticizer and Nano-Clay on the Buildability of 3D Printable Cementitious Materials.
    Wang Y; Jiang Y; Pan T; Yin K
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Volume Fraction and Surface Area of Aggregates on the Static Yield Stress and Structural Build-Up of Fresh Concrete.
    Ivanova I; Mechtcherine V
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32230904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3D Printed Ready-Mixed Concrete Power Distribution Substation: Materials and Construction Technology.
    Ji G; Ding T; Xiao J; Du S; Li J; Duan Z
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Properties of 3D-Printed Mortar in Air vs. Underwater.
    Woo SJ; Yang JM; Lee H; Kwon HK
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Test Methods to Evaluate the Printability of Concrete Materials for Additive Manufacturing.
    Mortada Y; Mohammad M; Mansoor B; Grasley Z; Masad E
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Curing Conditions on the Service Life of 3D Printed Concrete Formwork.
    Bekaert M; Van Tittelboom K; De Schutter G
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D-Printing.
    Ogura H; Nerella VN; Mechtcherine V
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30087296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poloxamer/Poly(ethylene glycol) Self-Healing Hydrogel for High-Precision Freeform Reversible Embedding of Suspended Hydrogel.
    Colly A; Marquette C; Courtial EJ
    Langmuir; 2021 Apr; 37(14):4154-4162. PubMed ID: 33787263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.