These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30795730)

  • 1. A novel framework of multivariate modeling of water distribution network through 3
    Ghosal PS; Javaregowda A; Gupta AK; Singh DP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(6):541-552. PubMed ID: 30795730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of experimental design for the optimization of artificial neural network-based water quality model: a case study of dissolved oxygen prediction.
    Šiljić Tomić A; Antanasijević D; Ristić M; Perić-Grujić A; Pocajt V
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9360-9370. PubMed ID: 29349736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water quality modeling in the dead end sections of drinking water distribution networks.
    Abokifa AA; Yang YJ; Lo CS; Biswas P
    Water Res; 2016 Feb; 89():107-17. PubMed ID: 26641015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network.
    Zhang Y; Gao X; Smith K; Inial G; Liu S; Conil LB; Pan B
    Water Res; 2019 Nov; 164():114888. PubMed ID: 31377525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neural network approach to burst detection.
    Mounce SR; Day AJ; Wood AS; Khan A; Widdop PD; Machell J
    Water Sci Technol; 2002; 45(4-5):237-46. PubMed ID: 11936639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pollutant intrusion modeling in water distribution networks using artificial neural networks.
    Singh RM; Rahul AI
    J Environ Sci Eng; 2011 Jul; 53(3):245-56. PubMed ID: 23029924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of physically-based and data-driven models to predict microbial water quality in open channels.
    Kim M; Gerba CP; Choi CY
    J Environ Sci (China); 2010; 22(6):851-7. PubMed ID: 20923096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of short-term water demand prediction model to Seoul.
    Joo CN; Koo JY; Yu MJ
    Water Sci Technol; 2002; 46(6-7):255-61. PubMed ID: 12380999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting conductance due to upconing using neural networks.
    Coppola EA; McLane CF; Poulton MM; Szidarovszky F; Magelky RD
    Ground Water; 2005; 43(6):827-36. PubMed ID: 16324004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KNT-artificial neural network model for flux prediction of ultrafiltration membrane producing drinking water.
    Oh HK; Yu MJ; Gwon EM; Koo JY; Kim SG; Koizumi A
    Water Sci Technol; 2004; 50(8):103-10. PubMed ID: 15566193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial neural networks as alternative tool for minimizing error predictions in manufacturing ultradeformable nanoliposome formulations.
    León Blanco JM; González-R PL; Arroyo García CM; Cózar-Bernal MJ; Calle Suárez M; Canca Ortiz D; Rabasco Álvarez AM; González Rodríguez ML
    Drug Dev Ind Pharm; 2018 Jan; 44(1):135-143. PubMed ID: 28967285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a pressure head and pressure zones in water distribution systems by artificial neural networks.
    Dawidowicz J
    Neural Comput Appl; 2018; 30(8):2531-2538. PubMed ID: 30363755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiobjective evolutionary optimization of water distribution systems: Exploiting diversity with infeasible solutions.
    Tanyimboh TT; Seyoum AG
    J Environ Manage; 2016 Dec; 183():133-141. PubMed ID: 27589918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A universal deep learning approach for modeling the flow of patients under different severities.
    Jiang S; Chin KS; Tsui KL
    Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of artificial neural network technique.
    Ghritlahre HK; Prasad RK
    J Environ Manage; 2018 Oct; 223():566-575. PubMed ID: 29975883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial neural network application for predicting soil distribution coefficient of nickel.
    Falamaki A
    J Environ Radioact; 2013 Jan; 115():6-12. PubMed ID: 22846874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of artificial neural networks to assess pesticide contamination in shallow groundwater.
    Sahoo GB; Ray C; Mehnert E; Keefer DA
    Sci Total Environ; 2006 Aug; 367(1):234-51. PubMed ID: 16460784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mine water supply assessment and evaluation of the system response to the designed demand in a desert region, central Saudi Arabia.
    Yihdego Y; Drury L
    Environ Monit Assess; 2016 Nov; 188(11):619. PubMed ID: 27743279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle assessment of forecasting scenarios for urban water management: A first implementation of the WaLA model on Paris suburban area.
    Loubet P; Roux P; Guérin-Schneider L; Bellon-Maurel V
    Water Res; 2016 Mar; 90():128-140. PubMed ID: 26724447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique.
    Dogan E; Sengorur B; Koklu R
    J Environ Manage; 2009 Feb; 90(2):1229-35. PubMed ID: 18691805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.