These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30795730)

  • 21. Development of a method for comprehensive water quality forecasting and its application in Miyun reservoir of Beijing, China.
    Zhang L; Zou Z; Shan W
    J Environ Sci (China); 2017 Jun; 56():240-246. PubMed ID: 28571859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial neural network modeling in competitive adsorption of phenol and resorcinol from water environment using some carbonaceous adsorbents.
    Aghav RM; Kumar S; Mukherjee SN
    J Hazard Mater; 2011 Apr; 188(1-3):67-77. PubMed ID: 21316853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance.
    Mjalli FS; Al-Asheh S; Alfadala HE
    J Environ Manage; 2007 May; 83(3):329-38. PubMed ID: 16806660
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Preliminary application of Back-Propagation artificial neural network model on the prediction of infectious diarrhea incidence in Shanghai].
    Li J; Gu JZ; Mao SH; Xiao WJ; Jin HM; Zheng YX; Wang YM; Hu JY
    Zhonghua Liu Xing Bing Xue Za Zhi; 2013 Dec; 34(12):1198-202. PubMed ID: 24518019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorptive removal of arsenic by novel iron/olivine composite: Insights into preparation and adsorption process by response surface methodology and artificial neural network.
    Ghosal PS; Kattil KV; Yadav MK; Gupta AK
    J Environ Manage; 2018 Mar; 209():176-187. PubMed ID: 29291487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep learning identifies accurate burst locations in water distribution networks.
    Zhou X; Tang Z; Xu W; Meng F; Chu X; Xin K; Fu G
    Water Res; 2019 Dec; 166():115058. PubMed ID: 31536886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A hybrid artificial neural network-numerical model for ground water problems.
    Szidarovszky F; Coppola EA; Long J; Hall AD; Poulton MM
    Ground Water; 2007; 45(5):590-600. PubMed ID: 17760585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of artificial neural network, fuzzy logic and decision tree algorithms for modelling of streamflow at Kasol in India.
    Senthil Kumar AR; Goyal MK; Ojha CS; Singh RD; Swamee PK
    Water Sci Technol; 2013; 68(12):2521-6. PubMed ID: 24355836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Topological attributes of network resilience: A study in water distribution systems.
    Meng F; Fu G; Farmani R; Sweetapple C; Butler D
    Water Res; 2018 Oct; 143():376-386. PubMed ID: 29986247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling the effects of meteorological parameters on water temperature using artificial neural networks.
    Temizyurek M; Dadaser-Celik F
    Water Sci Technol; 2018 Mar; 77(5-6):1724-1733. PubMed ID: 29595175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multilayer perceptron neural network for flow prediction.
    Araujo P; Astray G; Ferrerio-Lage JA; Mejuto JC; Rodriguez-Suarez JA; Soto B
    J Environ Monit; 2011 Jan; 13(1):35-41. PubMed ID: 21088795
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimizing the monitoring strategy of wastewater treatment plants by multiobjective neural networks approach.
    Chen HW; Ning SK; Yu RF; Hung MS
    Environ Monit Assess; 2007 Feb; 125(1-3):325-32. PubMed ID: 17219237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Study on the automatic parameters identification of water pipe network model].
    Jia HF; Zhao QF
    Huan Jing Ke Xue; 2010 Jan; 31(1):82-7. PubMed ID: 20329520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.
    Alizadeh MJ; Kavianpour MR
    Mar Pollut Bull; 2015 Sep; 98(1-2):171-8. PubMed ID: 26140748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. System dynamics modeling for municipal water demand estimation in an urban region under uncertain economic impacts.
    Qi C; Chang NB
    J Environ Manage; 2011 Jun; 92(6):1628-41. PubMed ID: 21324581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Traffic accident reconstruction and an approach for prediction of fault rates using artificial neural networks: A case study in Turkey.
    Can Yilmaz A; Aci C; Aydin K
    Traffic Inj Prev; 2016 Aug; 17(6):585-9. PubMed ID: 26759925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A framework for parameter estimation and model selection in kernel deep stacking networks.
    Welchowski T; Schmid M
    Artif Intell Med; 2016 Jun; 70():31-40. PubMed ID: 27431035
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Establishment of the predictive model of source eutrophication using artificial neural network].
    Yang S; Zhang H; Ba Y; Cheng X
    Wei Sheng Yan Jiu; 2008 Sep; 37(5):543-5. PubMed ID: 19069648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Application of resilient backpropagation neural network in predicting hydrophobic parameters of alkylbenzenes].
    Liu ED; Yang GL; Tian BJ; Li ZW; Chen Y
    Se Pu; 2002 May; 20(3):216-8. PubMed ID: 12541939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward automatic time-series forecasting using neural networks.
    Yan W
    IEEE Trans Neural Netw Learn Syst; 2012 Jul; 23(7):1028-39. PubMed ID: 24807130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.