BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 30795750)

  • 1. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa.
    Cary GA; Wolff A; Zueva O; Pattinato J; Hinman VF
    BMC Biol; 2019 Feb; 17(1):16. PubMed ID: 30795750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration in bipinnaria larvae of the bat star Patiria miniata induces rapid and broad new gene expression.
    Oulhen N; Heyland A; Carrier TJ; Zazueta-Novoa V; Fresques T; Laird J; Onorato TM; Janies D; Wessel G
    Mech Dev; 2016 Nov; 142():10-21. PubMed ID: 27555501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regeneration of the larval sea star nervous system by wounding induced respecification to the Sox2 lineage.
    Zheng M; Zueva O; Hinman VF
    Elife; 2022 Jan; 11():. PubMed ID: 35029145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Use of Larval Sea Stars and Sea Urchins in the Discovery of Shared Mechanisms of Metazoan Whole-Body Regeneration.
    Wolff A; Hinman V
    Genes (Basel); 2021 Jul; 12(7):. PubMed ID: 34356079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The arm of the starfish: The far-reaching applications of Patiria miniata as a model system in evolutionary, developmental, and regenerative biology.
    Meyer A; Hinman V
    Curr Top Dev Biol; 2022; 147():523-543. PubMed ID: 35337461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying Echinodermata Arm Explant Regeneration Using Echinaster sepositus.
    Ferrario C; Ben Khadra Y; Sugni M; Candia Carnevali MD; Martinez P; Bonasoro F
    Methods Mol Biol; 2022; 2450():263-291. PubMed ID: 35359313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of a novel deuterostome model for the study of regeneration genetics: molecular cloning of genes that are differentially expressed during early stages of larval sea star regeneration.
    Vickery MC; Vickery MS; McClintock JB; Amsler CD
    Gene; 2001 Jan; 262(1-2):73-80. PubMed ID: 11179669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The skeletal proteome of the sea star Patiria miniata and evolution of biomineralization in echinoderms.
    Flores RL; Livingston BT
    BMC Evol Biol; 2017 Jun; 17(1):125. PubMed ID: 28583083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental aspects of arm repair phase in two echinoderm models.
    Ferrario C; Ben Khadra Y; Czarkwiani A; Zakrzewski A; Martinez P; Colombo G; Bonasoro F; Candia Carnevali MD; Oliveri P; Sugni M
    Dev Biol; 2018 Jan; 433(2):297-309. PubMed ID: 29291979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms.
    Yankura KA; Martik ML; Jennings CK; Hinman VF
    BMC Biol; 2010 Nov; 8():143. PubMed ID: 21118544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: A Transcriptomic case study in the Demosponge Halisarca caerulea.
    Kenny NJ; de Goeij JM; de Bakker DM; Whalen CG; Berezikov E; Riesgo A
    Mar Genomics; 2018 Feb; 37():135-147. PubMed ID: 29198427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton.
    Koga H; Fujitani H; Morino Y; Miyamoto N; Tsuchimoto J; Shibata TF; Nozawa M; Shigenobu S; Ogura A; Tachibana K; Kiyomoto M; Amemiya S; Wada H
    PLoS One; 2016; 11(2):e0149067. PubMed ID: 26866800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural and molecular analysis of the origin and differentiation of cells mediating brittle star skeletal regeneration.
    Piovani L; Czarkwiani A; Ferrario C; Sugni M; Oliveri P
    BMC Biol; 2021 Jan; 19(1):9. PubMed ID: 33461552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New hypotheses of cell type diversity and novelty from orthology-driven comparative single cell and nuclei transcriptomics in echinoderms.
    Meyer A; Ku C; Hatleberg WL; Telmer CA; Hinman V
    Elife; 2023 Jul; 12():. PubMed ID: 37470227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possibility of mixed progenitor cells in sea star arm regeneration.
    Hernroth B; Farahani F; Brunborg G; Dupont S; Dejmek A; Sköld HN
    J Exp Zool B Mol Dev Evol; 2010 Sep; 314(6):457-68. PubMed ID: 20700890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated view of asteroid regeneration: tissues, cells and molecules.
    Ben Khadra Y; Sugni M; Ferrario C; Bonasoro F; Varela Coelho A; Martinez P; Candia Carnevali MD
    Cell Tissue Res; 2017 Oct; 370(1):13-28. PubMed ID: 28331971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and evolution of gut structures: from molecules to function.
    Annunziata R; Andrikou C; Perillo M; Cuomo C; Arnone MI
    Cell Tissue Res; 2019 Sep; 377(3):445-458. PubMed ID: 31446445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis.
    DuBuc TQ; Traylor-Knowles N; Martindale MQ
    BMC Biol; 2014 Mar; 12():24. PubMed ID: 24670243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo transcriptome of the European brittle star Amphiura filiformis pluteus larvae.
    Delroisse J; Ortega-Martinez O; Dupont S; Mallefet J; Flammang P
    Mar Genomics; 2015 Oct; 23():109-21. PubMed ID: 26044617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory heterochronies and loose temporal scaling between sea star and sea urchin regulatory circuits.
    Gildor T; Hinman V; Ben-Tabou-De-Leon S
    Int J Dev Biol; 2017; 61(3-4-5):347-356. PubMed ID: 28621432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.