These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30795870)

  • 41. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.
    Mierke CT
    Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pulling Membrane Nanotubes from Giant Unilamellar Vesicles.
    Prévost C; Tsai FC; Bassereau P; Simunovic M
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286431
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular-Scale Biophysical Modulation of an Endothelial Membrane by Oxidized Phospholipids.
    Ayee MAA; LeMaster E; Shentu TP; Singh DK; Barbera N; Soni D; Tiruppathi C; Subbaiah PV; Berdyshev E; Bronova I; Cho M; Akpa BS; Levitan I
    Biophys J; 2017 Jan; 112(2):325-338. PubMed ID: 28122218
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic sorting of lipids and proteins in multicomponent membranes.
    Jiang H
    Phys Rev Lett; 2012 Nov; 109(19):198101. PubMed ID: 23215429
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Membrane monolayer protrusion mediates a new nanoparticle wrapping pathway.
    Yue T; Zhang X; Huang F
    Soft Matter; 2014 Mar; 10(12):2024-34. PubMed ID: 24652443
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microphase separation in nonequilibrium biomembranes.
    Sens P; Turner MS
    Phys Rev Lett; 2011 Jun; 106(23):238101. PubMed ID: 21770544
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism of membrane nanotube formation by molecular motors.
    Leduc C; Campàs O; Joanny JF; Prost J; Bassereau P
    Biochim Biophys Acta; 2010 Jul; 1798(7):1418-26. PubMed ID: 19948146
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solvent-exposed lipid tail protrusions depend on lipid membrane composition and curvature.
    Tahir MA; Van Lehn RC; Choi SH; Alexander-Katz A
    Biochim Biophys Acta; 2016 Jun; 1858(6):1207-15. PubMed ID: 26828121
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anisotropic Membrane Curvature Sensing by Amphipathic Peptides.
    Gómez-Llobregat J; Elías-Wolff F; Lindén M
    Biophys J; 2016 Jan; 110(1):197-204. PubMed ID: 26745422
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical stability of membrane nanotubular protrusions influenced by attachment of flexible rod-like proteins.
    Perutková S; Kralj-Iglic V; Frank M; Iglic A
    J Biomech; 2010 May; 43(8):1612-7. PubMed ID: 20185134
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pulling together: Tissue-generated forces that drive lumen morphogenesis.
    Navis A; Nelson CM
    Semin Cell Dev Biol; 2016 Jul; 55():139-47. PubMed ID: 26778757
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calcium-Induced Lipid Nanocluster Structures: Sculpturing of the Plasma Membrane.
    Hallock MJ; Greenwood AI; Wang Y; Morrissey JH; Tajkhorshid E; Rienstra CM; Pogorelov TV
    Biochemistry; 2018 Dec; 57(50):6897-6905. PubMed ID: 30456950
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the impact of nanotube diameter on biomembrane indentation - Computer simulations study.
    Raczyński P; Górny K; Raczyńska V; Pabiszczak M; Dendzik Z; Gburski Z
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):310-318. PubMed ID: 29100891
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Organizing membrane-curving proteins: the emerging dynamical picture.
    Simunovic M; Bassereau P; Voth GA
    Curr Opin Struct Biol; 2018 Aug; 51():99-105. PubMed ID: 29609179
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular dynamics study of surfactant-like peptide based nanostructures.
    Colherinhas G; Fileti E
    J Phys Chem B; 2014 Oct; 118(42):12215-22. PubMed ID: 25264942
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamics of membrane tethers reveal novel aspects of cytoskeleton-membrane interactions in axons.
    Datar A; Bornschlögl T; Bassereau P; Prost J; Pullarkat PA
    Biophys J; 2015 Feb; 108(3):489-97. PubMed ID: 25650917
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aggregation of nanoparticles regulated by mechanical properties of nanoparticle-membrane system.
    Tang H; Ye H; Zhang H; Zheng Y
    Nanotechnology; 2018 Oct; 29(40):405102. PubMed ID: 30020084
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A computational analysis of the insertion of carbon nanotubes into cellular membranes.
    Höfinger S; Melle-Franco M; Gallo T; Cantelli A; Calvaresi M; Gomes JA; Zerbetto F
    Biomaterials; 2011 Oct; 32(29):7079-85. PubMed ID: 21723603
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Artificial biomembrane morphology: a dissipative particle dynamics study.
    Becton M; Averett R; Wang X
    J Biomol Struct Dyn; 2018 Aug; 36(11):2976-2987. PubMed ID: 28853329
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bacterial nanotubes: a conduit for intercellular molecular trade.
    Baidya AK; Bhattacharya S; Dubey GP; Mamou G; Ben-Yehuda S
    Curr Opin Microbiol; 2018 Apr; 42():1-6. PubMed ID: 28961452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.