BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 307962)

  • 1. High-field 13C nuclear magnetic resonance studies at 90.5 MHz of the basic pancreatic trypsin inhibitor.
    Richarz R; Wüthrich K
    Biochemistry; 1978 Jun; 17(12):2263-9. PubMed ID: 307962
    [No Abstract]   [Full Text] [Related]  

  • 2. Individual assignments of the methyl resonances in the 1H nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor.
    Wüthrich K; Wagner G; Richarz R; Perkins SJ
    Biochemistry; 1978 Jun; 17(12):2253-63. PubMed ID: 307961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amide protein exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution. Studies with two-dimensional nuclear magnetic resonance.
    Wagner G; Wüthrich K
    J Mol Biol; 1982 Sep; 160(2):343-61. PubMed ID: 6184480
    [No Abstract]   [Full Text] [Related]  

  • 4. Protein conformation and proton nuclear-magnetic-resonance chemical shifts.
    Pardi A; Wagner G; Wüthrich K
    Eur J Biochem; 1983 Dec; 137(3):445-54. PubMed ID: 6198174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High field 13C NMR studies at 90.5 MHz of the methyl groups in the basic pancreatic trypsin inhibitor.
    Richarz R; Wüthrich K
    FEBS Lett; 1977 Jul; 79(1):64-8. PubMed ID: 302222
    [No Abstract]   [Full Text] [Related]  

  • 6. Carbon-13 nuclear magnetic resonance relaxation studies of internal mobility of the polypeptide chain in basic pancreatic trypsin inhibitor and a selectively reduced analogue.
    Richarz R; Nagayama K; Wüthrich K
    Biochemistry; 1980 Nov; 19(23):5189-96. PubMed ID: 6160872
    [No Abstract]   [Full Text] [Related]  

  • 7. Toward the complete assignment of the carbon nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor.
    Wagner G; Brühwiler D
    Biochemistry; 1986 Oct; 25(20):5839-43. PubMed ID: 2431707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational studies by 1H nuclear magnetic resonance of the basic pancreatic trypsin inhibitor after reduction of the disulfide bond between Cys-14 and Cys-38. Influence of charged protecting groups on the stability of the protein.
    Wagner G; Kalb AJ; Wüthrich K
    Eur J Biochem; 1979 Apr; 95(2):249-53. PubMed ID: 313338
    [No Abstract]   [Full Text] [Related]  

  • 9. The influence of localized chemical modifications of the basic pancreatic trypsin inhibitor on static and dynamic aspects of the molecular conformation in solution.
    Wagner G; Tschesche H; Wüthrich K
    Eur J Biochem; 1979 Apr; 95(2):239-48. PubMed ID: 313337
    [No Abstract]   [Full Text] [Related]  

  • 10. Study of nitrogen-15-labeled amino acids and peptides by nuclear magnetic resonance spectroscopy.
    Sogn JA; Gibbons WA; Randall EW
    Biochemistry; 1973 May; 12(11):2100-5. PubMed ID: 4705988
    [No Abstract]   [Full Text] [Related]  

  • 11. 1H nuclear-magnetic-resonance studies of the porcine-pancreatic secretory trypsin inhibitor at 270 MHz.
    De Marco A; Menegatti E; Guarneri M
    Eur J Biochem; 1979 Dec; 102(1):185-94. PubMed ID: 520321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual assignments of amide proton resonances in the proton NMR spectrum of the basic pancreatic trypsin inhibitor.
    Dubs A; Wagner G; Wüthrich K
    Biochim Biophys Acta; 1979 Mar; 577(1):177-94. PubMed ID: 311660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of a single salt bridge on static and dynamic features of the globular solution conformation of the basic pancreatic trypsin inhibitor. 1H and 13C nuclear-magnetic-resonance studies of the native and the transaminated inhibitor.
    Brown LR; De Marco A; Richarz R; Wagner G; Wüthrich K
    Eur J Biochem; 1978 Jul; 88(1):87-95. PubMed ID: 27364
    [No Abstract]   [Full Text] [Related]  

  • 14. Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Basic pancreatic trypsin inhibitor.
    Wagner G; Wüthrich K
    J Mol Biol; 1982 Mar; 155(3):347-66. PubMed ID: 6176717
    [No Abstract]   [Full Text] [Related]  

  • 15. Internal mobility of the basic pancreatic trypsin inhibitor in solution: a comparison of NMR spin relaxation measurements and molecular dynamics simulations.
    Smith PE; van Schaik RC; Szyperski T; Wüthrich K; van Gunsteren WF
    J Mol Biol; 1995 Feb; 246(2):356-65. PubMed ID: 7532721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete tyrosine assignments in the high-field 1H nuclear magnetic resonance spectrum of bovine pancreatic trypsin inhibitor selectively reduced and carboxamidomethylated at cystine 14-38.
    Snyder GH; Rowan R; Sykes BD
    Biochemistry; 1976 Jun; 15(11):2275-83. PubMed ID: 6043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural effects of hydration: studies of lysozyme by 13C solids NMR.
    Kennedy SD; Bryant RG
    Biopolymers; 1990 Dec; 29(14):1801-6. PubMed ID: 2207286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear magnetic resonance measurement of hydrogen exchange kinetics of single protons in basic pancreatic trypsin inhibitor.
    Hilton BD; Woodward CK
    Biochemistry; 1978 Aug; 17(16):3325-32. PubMed ID: 28747
    [No Abstract]   [Full Text] [Related]  

  • 19. Interactions of a molybdenum(VI) oxo-cation with some uronic acids: a 1H- and 13C-nuclear magnetic resonance study.
    Stojkovski S; Whitfield DM; Magee RJ; James BD; Sarkar B
    J Inorg Biochem; 1990 Jun; 39(2):125-36. PubMed ID: 2166133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 13C and 1H nuclear magnetic resonance studies of bradykinin and selected peptide fragments.
    London RE; Stewart JM; Cann JR; Matwiyoff NA
    Biochemistry; 1978 Jun; 17(12):2270-7. PubMed ID: 28141
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.