BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 30796287)

  • 1. Assumptions about the positioning of virtual stimuli affect gaze direction estimates during Augmented Reality based interactions.
    Binetti N; Cheng T; Mareschal I; Brumby D; Julier S; Bianchi-Berthouze N
    Sci Rep; 2019 Feb; 9(1):2566. PubMed ID: 30796287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Depth Information on Visual Target Identification Task Performance in Shared Gaze Environments.
    Erickson A; Norouzi N; Kim K; LaViola JJ; Bruder G; Welch GF
    IEEE Trans Vis Comput Graph; 2020 May; 26(5):1934-1944. PubMed ID: 32070964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of AR Display Context Switching and Focal Distance Switching on Human Performance.
    Gabbard JL; Mehra DG; Swan JE
    IEEE Trans Vis Comput Graph; 2019 Jun; 25(6):2228-2241. PubMed ID: 29994003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Awareness of the real-world environment when using augmented reality head-mounted display.
    Aromaa S; Väätänen A; Aaltonen I; Goriachev V; Helin K; Karjalainen J
    Appl Ergon; 2020 Oct; 88():103145. PubMed ID: 32421637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perceptual Limits of Optical See-Through Visors for Augmented Reality Guidance of Manual Tasks.
    Condino S; Carbone M; Piazza R; Ferrari M; Ferrari V
    IEEE Trans Biomed Eng; 2020 Feb; 67(2):411-419. PubMed ID: 31059421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AR-Loupe: Magnified Augmented Reality by Combining an Optical See-Through Head-Mounted Display and a Loupe.
    Qian L; Song T; Unberath M; Kazanzides P
    IEEE Trans Vis Comput Graph; 2022 Jul; 28(7):2550-2562. PubMed ID: 33170780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Security-Utility Trade-off for Iris Authentication and Eye Animation for Social Virtual Avatars.
    John B; Jorg S; Koppal S; Jain E
    IEEE Trans Vis Comput Graph; 2020 May; 26(5):1880-1890. PubMed ID: 32070963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mirror in the sky: assessment of an augmented reality method for depicting navigational information.
    Reiner AJ; Hollands JG; Jamieson GA; Boustila S
    Ergonomics; 2020 May; 63(5):548-562. PubMed ID: 32200733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensible visualization for augmented reality.
    Kalkofen D; Mendez E; Schmalstieg D
    IEEE Trans Vis Comput Graph; 2009; 15(2):193-204. PubMed ID: 19147885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating Search Among Physical and Virtual Objects Under Different Lighting Conditions.
    Kim YJ; Kumaran R; Sayyad E; Milner A; Bullock T; Giesbrecht B; Hollerer T
    IEEE Trans Vis Comput Graph; 2022 Nov; 28(11):3788-3798. PubMed ID: 36048996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. User's image perception improved strategy and application of augmented reality systems in smart medical care: A review.
    Jiang J; Zhang J; Sun J; Wu D; Xu S
    Int J Med Robot; 2023 Jun; 19(3):e2497. PubMed ID: 36629798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A head mounted augmented reality design practice for maintenance assembly: Toward meeting perceptual and cognitive needs of AR users.
    Ariansyah D; Erkoyuncu JA; Eimontaite I; Johnson T; Oostveen AM; Fletcher S; Sharples S
    Appl Ergon; 2022 Jan; 98():103597. PubMed ID: 34598078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ARETT: Augmented Reality Eye Tracking Toolkit for Head Mounted Displays.
    Kapp S; Barz M; Mukhametov S; Sonntag D; Kuhn J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33806863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and application of real-time visual attention model for the exploration of 3D virtual environments.
    Hillaire S; Lécuyer A; Regia-Corte T; Cozot R; Royan J; Breton G
    IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):356-68. PubMed ID: 21931178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-Depth Review of Augmented Reality: Tracking Technologies, Development Tools, AR Displays, Collaborative AR, and Security Concerns.
    Syed TA; Siddiqui MS; Abdullah HB; Jan S; Namoun A; Alzahrani A; Nadeem A; Alkhodre AB
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaze-Dependent Simulation of Light Perception in Virtual Reality.
    Luidolt LR; Wimmer M; Krosl K
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3557-3567. PubMed ID: 32941149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays.
    Padmanaban N; Konrad R; Stramer T; Cooper EA; Wetzstein G
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2183-2188. PubMed ID: 28193871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Egocentric depth judgments in optical, see-through augmented reality.
    Swan JE; Jones A; Kolstad E; Livingston MA; Smallman HS
    IEEE Trans Vis Comput Graph; 2007; 13(3):429-42. PubMed ID: 17356211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Development of Virtual Medical System Interface Based on VR-AR Hybrid Technology.
    Cong X; Li T
    Comput Math Methods Med; 2020; 2020():7108147. PubMed ID: 32908580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmented reality: a view to future visual supports for people with disability.
    Bryant L; Hemsley B
    Disabil Rehabil Assist Technol; 2024 Apr; 19(3):800-813. PubMed ID: 36149835
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.