These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30796342)

  • 1. Electrically Reconfigurable Micromirror Array for Direct Spatial Light Modulation of Terahertz Waves over a Bandwidth Wider Than 1 THz.
    Kappa J; Sokoluk D; Klingel S; Shemelya C; Oesterschulze E; Rahm M
    Sci Rep; 2019 Feb; 9(1):2597. PubMed ID: 30796342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-color terahertz spatial light modulator for single-pixel imaging.
    Li W; Hu X; Wu J; Fan K; Chen B; Zhang C; Hu W; Cao X; Jin B; Lu Y; Chen J; Wu P
    Light Sci Appl; 2022 Jun; 11(1):191. PubMed ID: 35739086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetic behavior of spatial terahertz wave modulators based on reconfigurable micromirror gratings in Littrow configuration.
    Kappa J; Schmitt KM; Rahm M
    Opt Express; 2017 Aug; 25(17):20850-20859. PubMed ID: 29041762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator.
    Shrekenhamer D; Watts CM; Padilla WJ
    Opt Express; 2013 May; 21(10):12507-18. PubMed ID: 23736469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation.
    Rout S; Sonkusale S
    Opt Express; 2016 Jun; 24(13):14618-31. PubMed ID: 27410614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband modulation of terahertz waves through electrically driven hybrid bowtie antenna-VO
    Han C; Parrott EPJ; Humbert G; Crunteanu A; Pickwell-MacPherson E
    Sci Rep; 2017 Oct; 7(1):12725. PubMed ID: 28983089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfigurable photoinduced terahertz wave modulation using hybrid metal-silicon metasurface.
    Ullah A; Wang YC; Yeasmin S; Deng Y; Ren J; Shi Y; Liu L; Cheng LJ
    Opt Lett; 2022 Jun; 47(11):2750-2753. PubMed ID: 35648921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terahertz beam steering and variable focusing using programmable diffraction gratings.
    Monnai Y; Altmann K; Jansen C; Hillmer H; Koch M; Shinoda H
    Opt Express; 2013 Jan; 21(2):2347-54. PubMed ID: 23389214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time terahertz imaging with a single-pixel detector.
    Stantchev RI; Yu X; Blu T; Pickwell-MacPherson E
    Nat Commun; 2020 May; 11(1):2535. PubMed ID: 32439984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-enabled electrically controlled terahertz spatial light modulators.
    Kakenov N; Takan T; Ozkan VA; Balcı O; Polat EO; Altan H; Kocabas C
    Opt Lett; 2015 May; 40(9):1984-7. PubMed ID: 25927764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beam-shaped femtosecond laser printing of quasi-capsule-shaped holographic terahertz metasurfaces.
    Rao D; Qian J; Yu X; Liu L; Wang G; Zhou Y; Zhang T; Zhao Q
    Opt Lett; 2024 Mar; 49(6):1544-1547. PubMed ID: 38489446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz Reconfigurable Intelligent Surfaces (RISs) for 6G Communication Links.
    Yang F; Pitchappa P; Wang N
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal and electrical switchable wide-angle multi-band terahertz absorber.
    Cheng R; Zhou Y; Liang B; Pan J; Luo Q; Liu J
    Opt Express; 2024 Mar; 32(7):12476-12495. PubMed ID: 38571069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a Reconfigurable Ultra-Wideband Terahertz Polarization Rotator Based on Graphene Metamaterial.
    Ding G; Zhou Y; Zhang S; Luo X; Wang S
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical modulation of continuous terahertz waves towards cost-effective reconfigurable quasi-optical terahertz components.
    Cheng LJ; Liu L
    Opt Express; 2013 Nov; 21(23):28657-67. PubMed ID: 24514377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active terahertz time differentiator using piezoelectric micromachined ultrasonic transducer array.
    Amirkhan F; Robichaud A; Ropagnol X; Gratuze M; Ozaki T; Nabki F; Blanchard F
    Opt Lett; 2020 Jul; 45(13):3589-3592. PubMed ID: 32630906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding.
    Zhao J; E Y; Williams K; Zhang XC; Boyd RW
    Light Sci Appl; 2019; 8():55. PubMed ID: 31231521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terahertz Beam Steering Concept Based on a MEMS-Reconfigurable Reflection Grating.
    Liu X; Samfaß L; Kolpatzeck K; Häring L; Balzer JC; Hoffmann M; Czylwik A
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32438568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Speed Terahertz Modulator on the Chip Based on Tunable Terahertz Slot Waveguide.
    Singh PK; Sonkusale S
    Sci Rep; 2017 Jan; 7():40933. PubMed ID: 28102306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Powered Terahertz Modulators Based on Metamaterials, Liquid Crystals, and Triboelectric Nanogenerators.
    Hao Y; Niu Z; Yang J; Wang M; Liu H; Qin Y; Su W; Zhang H; Zhang C; Li X
    ACS Appl Mater Interfaces; 2024 Jun; 16(25):32249-32258. PubMed ID: 38869324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.