BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 30796895)

  • 1. Brainstem correlates of concurrent speech identification in adverse listening conditions.
    Yellamsetty A; Bidelman GM
    Brain Res; 2019 Jul; 1714():182-192. PubMed ID: 30796895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise and pitch interact during the cortical segregation of concurrent speech.
    Bidelman GM; Yellamsetty A
    Hear Res; 2017 Aug; 351():34-44. PubMed ID: 28578876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low- and high-frequency cortical brain oscillations reflect dissociable mechanisms of concurrent speech segregation in noise.
    Yellamsetty A; Bidelman GM
    Hear Res; 2018 Apr; 361():92-102. PubMed ID: 29398142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcortical rather than cortical sources of the frequency-following response (FFR) relate to speech-in-noise perception in normal-hearing listeners.
    Bidelman GM; Momtaz S
    Neurosci Lett; 2021 Feb; 746():135664. PubMed ID: 33497718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Frequency Following Responses to Vocoded Speech.
    Ananthakrishnan S; Luo X; Krishnan A
    Ear Hear; 2017; 38(5):e256-e267. PubMed ID: 28362674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Frequency Following Responses to Filtered Speech.
    Ananthakrishnan S; Grinstead L; Yurjevich D
    Ear Hear; 2021; 42(1):87-105. PubMed ID: 33369591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Envelope following responses elicited by English sentences.
    Choi JM; Purcell DW; Coyne JA; Aiken SJ
    Ear Hear; 2013 Sep; 34(5):637-50. PubMed ID: 23575462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of fundamental frequency differences in the perceptual separation of competing vowel sounds by listeners with normal hearing and listeners with hearing loss.
    Arehart KH; King CA; McLean-Mudgett KS
    J Speech Lang Hear Res; 1997 Dec; 40(6):1434-44. PubMed ID: 9430762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FO processing and the separation of competing speech signals by listeners with normal hearing and with hearing loss.
    Summers V; Leek MR
    J Speech Lang Hear Res; 1998 Dec; 41(6):1294-306. PubMed ID: 9859885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Duplex perception reveals brainstem auditory representations are modulated by listeners' ongoing percept for speech.
    Rizzi R; Bidelman GM
    Cereb Cortex; 2023 Sep; 33(18):10076-10086. PubMed ID: 37522248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brainstem auditory responses to resolved and unresolved harmonics of a synthetic vowel in quiet and noise.
    Laroche M; Dajani HR; Prévost F; Marcoux AM
    Ear Hear; 2013; 34(1):63-74. PubMed ID: 22814487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attention reinforces human corticofugal system to aid speech perception in noise.
    Price CN; Bidelman GM
    Neuroimage; 2021 Jul; 235():118014. PubMed ID: 33794356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human Frequency Following Response: Neural Representation of Envelope and Temporal Fine Structure in Listeners with Normal Hearing and Sensorineural Hearing Loss.
    Ananthakrishnan S; Krishnan A; Bartlett E
    Ear Hear; 2016; 37(2):e91-e103. PubMed ID: 26583482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural Representation of Concurrent Vowels in Macaque Primary Auditory Cortex.
    Fishman YI; Micheyl C; Steinschneider M
    eNeuro; 2016; 3(3):. PubMed ID: 27294198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pitches of concurrent vowels.
    Assmann PF; Paschall DD
    J Acoust Soc Am; 1998 Feb; 103(2):1150-60. PubMed ID: 9479768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Alternative Explanation for Difficulties with Speech in Background Talkers: Abnormal Fusion of Vowels Across Fundamental Frequency and Ears.
    Reiss LAJ; Molis MR
    J Assoc Res Otolaryngol; 2021 Jul; 22(4):443-461. PubMed ID: 33877470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hearing two things at once: neurophysiological indices of speech segregation and identification.
    Alain C; Reinke K; He Y; Wang C; Lobaugh N
    J Cogn Neurosci; 2005 May; 17(5):811-8. PubMed ID: 15904547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory cortex is susceptible to lexical influence as revealed by informational vs. energetic masking of speech categorization.
    Carter JA; Bidelman GM
    Brain Res; 2021 May; 1759():147385. PubMed ID: 33631210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brainstem-cortical functional connectivity for speech is differentially challenged by noise and reverberation.
    Bidelman GM; Davis MK; Pridgen MH
    Hear Res; 2018 Sep; 367():149-160. PubMed ID: 29871826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced brainstem phase-locking in low-level noise reveals stochastic resonance in the frequency-following response (FFR).
    Shukla B; Bidelman GM
    Brain Res; 2021 Nov; 1771():147643. PubMed ID: 34473999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.