These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30796938)

  • 41. The amino-terminal region of Atg3 is essential for association with phosphatidylethanolamine in Atg8 lipidation.
    Hanada T; Satomi Y; Takao T; Ohsumi Y
    FEBS Lett; 2009 Apr; 583(7):1078-83. PubMed ID: 19285500
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of Avt1p as a vacuolar proton/amino acid antiporter in Saccharomyces cerevisiae.
    Tone J; Yoshimura A; Manabe K; Murao N; Sekito T; Kawano-Kawada M; Kakinuma Y
    Biosci Biotechnol Biochem; 2015; 79(5):782-9. PubMed ID: 25747199
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate.
    Efe JA; Botelho RJ; Emr SD
    Mol Biol Cell; 2007 Nov; 18(11):4232-44. PubMed ID: 17699591
    [TBL] [Abstract][Full Text] [Related]  

  • 44. VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy.
    Ramachandran N; Munteanu I; Wang P; Ruggieri A; Rilstone JJ; Israelian N; Naranian T; Paroutis P; Guo R; Ren ZP; Nishino I; Chabrol B; Pellissier JF; Minetti C; Udd B; Fardeau M; Tailor CS; Mahuran DJ; Kissel JT; Kalimo H; Levy N; Manolson MF; Ackerley CA; Minassian BA
    Acta Neuropathol; 2013 Mar; 125(3):439-57. PubMed ID: 23315026
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PI(3,5)P
    Wilson ZN; Scott AL; Dowell RD; Odorizzi G
    Mol Biol Cell; 2018 Jul; 29(13):1718-1731. PubMed ID: 29791245
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Organelle size control - increasing vacuole content activates SNAREs to augment organelle volume through homotypic fusion.
    Desfougères Y; Neumann H; Mayer A
    J Cell Sci; 2016 Jul; 129(14):2817-28. PubMed ID: 27252384
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cellular metabolism regulates contact sites between vacuoles and mitochondria.
    Hönscher C; Mari M; Auffarth K; Bohnert M; Griffith J; Geerts W; van der Laan M; Cabrera M; Reggiori F; Ungermann C
    Dev Cell; 2014 Jul; 30(1):86-94. PubMed ID: 25026035
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High throughput analysis of vacuolar acidification.
    Zhang C; Balutowski A; Feng Y; Calderin JD; Fratti RA
    Anal Biochem; 2022 Dec; 658():114927. PubMed ID: 36167157
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The vacuolar kinase Yck3 maintains organelle fragmentation by regulating the HOPS tethering complex.
    LaGrassa TJ; Ungermann C
    J Cell Biol; 2005 Jan; 168(3):401-14. PubMed ID: 15684030
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Membrane contact sites regulate vacuolar fission via sphingolipid metabolism.
    Hanaoka K; Nishikawa K; Ikeda A; Schlarmann P; Sasaki S; Fujii S; Yamashita S; Nakaji A; Funato K
    Elife; 2024 Mar; 12():. PubMed ID: 38536872
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bem1p, a scaffold signaling protein, mediates cyclin-dependent control of vacuolar homeostasis in Saccharomyces cerevisiae.
    Han BK; Bogomolnaya LM; Totten JM; Blank HM; Dangott LJ; Polymenis M
    Genes Dev; 2005 Nov; 19(21):2606-18. PubMed ID: 16230527
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Target of rapamycin signaling mediates vacuolar fission caused by endoplasmic reticulum stress in Saccharomyces cerevisiae.
    Stauffer B; Powers T
    Mol Biol Cell; 2015 Dec; 26(25):4618-30. PubMed ID: 26466677
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The vacuolar V1/V0-ATPase is involved in the release of the HOPS subunit Vps41 from vacuoles, vacuole fragmentation and fusion.
    Takeda K; Cabrera M; Rohde J; Bausch D; Jensen ON; Ungermann C
    FEBS Lett; 2008 Apr; 582(10):1558-63. PubMed ID: 18405665
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Organelle acidification negatively regulates vacuole membrane fusion in vivo.
    Desfougères Y; Vavassori S; Rompf M; Gerasimaite R; Mayer A
    Sci Rep; 2016 Jul; 6():29045. PubMed ID: 27363625
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cell cycle-linked vacuolar pH dynamics regulate amino acid homeostasis and cell growth.
    Okreglak V; Ling R; Ingaramo M; Thayer NH; Millett-Sikking A; Gottschling DE
    Nat Metab; 2023 Oct; 5(10):1803-1819. PubMed ID: 37640943
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pah1p negatively regulates the expression of V-ATPase genes as well as vacuolar acidification.
    Sherr GL; LaMassa N; Li E; Phillips G; Shen CH
    Biochem Biophys Res Commun; 2017 Sep; 491(3):693-700. PubMed ID: 28756231
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression.
    Delorme-Axford E; Guimaraes RS; Reggiori F; Klionsky DJ
    Methods; 2015 Mar; 75():3-12. PubMed ID: 25526918
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome.
    Baba M; Osumi M; Scott SV; Klionsky DJ; Ohsumi Y
    J Cell Biol; 1997 Dec; 139(7):1687-95. PubMed ID: 9412464
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proton Transport and pH Control in Fungi.
    Kane PM
    Adv Exp Med Biol; 2016; 892():33-68. PubMed ID: 26721270
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The G1 cyclin Cln3p controls vacuolar biogenesis in Saccharomyces cerevisiae.
    Han BK; Aramayo R; Polymenis M
    Genetics; 2003 Oct; 165(2):467-76. PubMed ID: 14573462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.