BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30796971)

  • 21. Strong calcium entry activates mitochondrial superoxide generation, upregulating kinase signaling in hippocampal neurons.
    Hongpaisan J; Winters CA; Andrews SB
    J Neurosci; 2004 Dec; 24(48):10878-87. PubMed ID: 15574738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. mu-Calpain mediated cleavage of the Na+/Ca2+ exchanger in isolated mitochondria under A23187 induced Ca2+ stimulation.
    Kar P; Chakraborti T; Samanta K; Chakraborti S
    Arch Biochem Biophys; 2009 Feb; 482(1-2):66-76. PubMed ID: 19094959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The modulation of action potential generation by calcium-induced calcium release is enhanced by mitochondrial inhibitors in mudpuppy parasympathetic neurons.
    Barstow KL; Locknar SA; Merriam LA; Parsons RL
    Neuroscience; 2004; 124(2):327-39. PubMed ID: 14980383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogen exerts neuroprotective effects on OGD/R damaged neurons in rat hippocampal by protecting mitochondrial function via regulating mitophagy mediated by PINK1/Parkin signaling pathway.
    Wu X; Li X; Liu Y; Yuan N; Li C; Kang Z; Zhang X; Xia Y; Hao Y; Tan Y
    Brain Res; 2018 Nov; 1698():89-98. PubMed ID: 29958907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parkin cleaves intracellular alpha-synuclein inclusions via the activation of calpain.
    Kim SJ; Sung JY; Um JW; Hattori N; Mizuno Y; Tanaka K; Paik SR; Kim J; Chung KC
    J Biol Chem; 2003 Oct; 278(43):41890-9. PubMed ID: 12917442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel.
    Kannurpatti SS; Joshi PG; Joshi NB
    Neurochem Res; 2000 Dec; 25(12):1527-36. PubMed ID: 11152381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Guanabenz promotes neuronal survival via enhancement of ATF4 and parkin expression in models of Parkinson disease.
    Sun X; Aimé P; Dai D; Ramalingam N; Crary JF; Burke RE; Greene LA; Levy OA
    Exp Neurol; 2018 May; 303():95-107. PubMed ID: 29432724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parkin promotes proteasomal degradation of synaptotagmin IV by accelerating polyubiquitination.
    Kabayama H; Tokushige N; Takeuchi M; Kabayama M; Fukuda M; Mikoshiba K
    Mol Cell Neurosci; 2017 Apr; 80():89-99. PubMed ID: 28254618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Early induction of calpains in rotenone-mediated neuronal apoptosis.
    Chen MJ; Yap YW; Choy MS; Koh CH; Seet SJ; Duan W; Whiteman M; Cheung NS
    Neurosci Lett; 2006 Apr 10-17; 397(1-2):69-73. PubMed ID: 16412576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of nitric oxide synthase and ROS-mediated activation of L-type voltage-gated Ca2+ channels in NMDA-induced DPYSL3 degradation.
    Kowara R; Moraleja KL; Chakravarthy B
    Brain Res; 2006 Nov; 1119(1):40-9. PubMed ID: 16987501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition.
    Maciel EN; Kowaltowski AJ; Schwalm FD; Rodrigues JM; Souza DO; Vercesi AE; Wajner M; Castilho RF
    J Neurochem; 2004 Sep; 90(5):1025-35. PubMed ID: 15312158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Persistent activation of Gsalpha through limited proteolysis by calpain.
    Sato-Kusubata K; Yajima Y; Kawashima S
    Biochem J; 2000 May; 347 Pt 3(Pt 3):733-40. PubMed ID: 10769177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons.
    Joselin AP; Hewitt SJ; Callaghan SM; Kim RH; Chung YH; Mak TW; Shen J; Slack RS; Park DS
    Hum Mol Genet; 2012 Nov; 21(22):4888-903. PubMed ID: 22872702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphorylation of Parkin at serine 131 by p38 MAPK promotes mitochondrial dysfunction and neuronal death in mutant A53T α-synuclein model of Parkinson's disease.
    Chen J; Ren Y; Gui C; Zhao M; Wu X; Mao K; Li W; Zou F
    Cell Death Dis; 2018 Jun; 9(6):700. PubMed ID: 29899409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Okadaic acid-induced Tau phosphorylation in rat brain: role of NMDA receptor.
    Kamat PK; Rai S; Swarnkar S; Shukla R; Ali S; Najmi AK; Nath C
    Neuroscience; 2013 May; 238():97-113. PubMed ID: 23415789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuronal nitric oxide synthase and calmodulin-dependent protein kinase IIalpha undergo neurotoxin-induced proteolysis.
    Hajimohammadreza I; Raser KJ; Nath R; Nadimpalli R; Scott M; Wang KK
    J Neurochem; 1997 Sep; 69(3):1006-13. PubMed ID: 9282922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucose deprivation produces a prolonged increase in sensitivity to glutamate in cultured rat cortical neurons.
    Vergun O; Han YY; Reynolds IJ
    Exp Neurol; 2003 Oct; 183(2):682-94. PubMed ID: 14552910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of phosphorylation of p35, an activator of cyclin-dependent kinase 5 (cdk5), on the proteolysis of p35.
    Kerokoski P; Suuronen T; Salminen A; Soininen H; Pirttilä T
    Brain Res Mol Brain Res; 2002 Oct; 106(1-2):50-6. PubMed ID: 12393264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of mitochondrial inhibitors on calcium homeostasis in tumor mast cells.
    Mohr FC; Fewtrell C
    Am J Physiol; 1990 Feb; 258(2 Pt 1):C217-26. PubMed ID: 2137675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation.
    Ren Y; Jiang H; Yang F; Nakaso K; Feng J
    J Biol Chem; 2009 Feb; 284(6):4009-17. PubMed ID: 19074146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.