These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 30796971)

  • 81. Ammonia induces calpain-dependent cleavage of CRMP-2 during neurite degeneration in primary cultured neurons.
    Cai Z; Zhu X; Zhang G; Wu F; Lin H; Tan M
    Aging (Albany NY); 2019 Jul; 11(13):4354-4366. PubMed ID: 31278888
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Calpain-catalyzed proteolysis of human dUTPase specifically removes the nuclear localization signal peptide.
    Bozóky Z; Róna G; Klement É; Medzihradszky KF; Merényi G; Vértessy BG; Friedrich P
    PLoS One; 2011; 6(5):e19546. PubMed ID: 21625588
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Parkin protects against mitochondrial toxins and beta-amyloid accumulation in skeletal muscle cells.
    Rosen KM; Veereshwarayya V; Moussa CE; Fu Q; Goldberg MS; Schlossmacher MG; Shen J; Querfurth HW
    J Biol Chem; 2006 May; 281(18):12809-16. PubMed ID: 16517603
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Calpains, mitochondria, and apoptosis.
    Smith MA; Schnellmann RG
    Cardiovasc Res; 2012 Oct; 96(1):32-7. PubMed ID: 22581845
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Identification of Phosphorylated Calpain 3 in Rat Brain Mitochondria under mPTP Opening.
    Baburuna Y; Sotnikova L; Krestinina O
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638951
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Parkin-dependent and -independent degradation of synaptotagmin-11 in neurons and astrocytes.
    Wang Y; Yan S; Zhang F; Li J; Li R; Zhang CX
    Neurosci Lett; 2020 Nov; 739():135402. PubMed ID: 32976921
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Rotenone-Induced Neurodegeneration Is Enabled by a p38-Parkin-ROS Signaling Feedback Loop.
    Chen J; Li M; Zhou X; Xie A; Cai Z; Fu C; Peng Y; Zhang H; Liu L
    J Agric Food Chem; 2021 Nov; 69(46):13942-13952. PubMed ID: 34779196
    [TBL] [Abstract][Full Text] [Related]  

  • 88. PACAP27 mitigates an age-dependent hippocampal vulnerability to PGJ2-induced spatial learning deficits and neuroinflammation in mice.
    Avila JA; Kiprowska M; Jean-Louis T; Rockwell P; Figueiredo-Pereira ME; Serrano PA
    Brain Behav; 2020 Jan; 10(1):e01465. PubMed ID: 31769222
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Prevention of calpain-dependent degradation of STK38 by MEKK2-mediated phosphorylation.
    Enomoto A; Fukasawa T; Tsumoto H; Karube M; Nakagawa K; Yoshizaki A; Sato S; Miura Y; Miyagawa K
    Sci Rep; 2019 Nov; 9(1):16010. PubMed ID: 31690749
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Extracellular CIRP Induces Calpain Activation in Neurons via PLC-IP
    Sharma A; Sari E; Lee Y; Patel S; Brenner M; Marambaud P; Wang P
    Mol Neurobiol; 2023 Jun; 60(6):3311-3328. PubMed ID: 36853429
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Mitochondrial transport in processes of cortical neurons is independent of intracellular calcium.
    Beltran-Parrazal L; López-Valdés HE; Brennan KC; Díaz-Muñoz M; de Vellis J; Charles AC
    Am J Physiol Cell Physiol; 2006 Dec; 291(6):C1193-7. PubMed ID: 16885395
    [TBL] [Abstract][Full Text] [Related]  

  • 92. PACAP27 prevents Parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2.
    Shivers KY; Nikolopoulou A; Machlovi SI; Vallabhajosula S; Figueiredo-Pereira ME
    Biochim Biophys Acta; 2014 Sep; 1842(9):1707-19. PubMed ID: 24970746
    [TBL] [Abstract][Full Text] [Related]  

  • 93. cAMP stimulates the ubiquitin/proteasome pathway in rat spinal cord neurons.
    Myeku N; Wang H; Figueiredo-Pereira ME
    Neurosci Lett; 2012 Oct; 527(2):126-31. PubMed ID: 22982149
    [TBL] [Abstract][Full Text] [Related]  

  • 94. In vitro stretch injury induces time- and severity-dependent alterations of STEP phosphorylation and proteolysis in neurons.
    Mesfin MN; von Reyn CR; Mott RE; Putt ME; Meaney DF
    J Neurotrauma; 2012 Jul; 29(10):1982-98. PubMed ID: 22435660
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Real-time visualization of cytoplasmic calpain activation and calcium deregulation in acute glutamate excitotoxicity.
    Gerencser AA; Mark KA; Hubbard AE; Divakaruni AS; Mehrabian Z; Nicholls DG; Polster BM
    J Neurochem; 2009 Aug; 110(3):990-1004. PubMed ID: 19493161
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Calcium-induced cleavage of DNA topoisomerase I involves the cytoplasmic-nuclear shuttling of calpain 2.
    Chou SM; Huang TH; Chen HC; Li TK
    Cell Mol Life Sci; 2011 Aug; 68(16):2769-84. PubMed ID: 21086148
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Salinomycin induces calpain and cytochrome c-mediated neuronal cell death.
    Boehmerle W; Endres M
    Cell Death Dis; 2011 Jun; 2(6):e168. PubMed ID: 21633391
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Lithium reduces the effects of rotenone-induced complex I dysfunction on DNA methylation and hydroxymethylation in rat cortical primary neurons.
    Scola G; Kim HK; Young LT; Salvador M; Andreazza AC
    Psychopharmacology (Berl); 2014 Oct; 231(21):4189-98. PubMed ID: 24777143
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Identification and optimization of a novel inhibitor of mitochondrial calpain 10.
    Rasbach KA; Arrington DD; Odejinmi S; Giguere C; Beeson CC; Schnellmann RG
    J Med Chem; 2009 Jan; 52(1):181-8. PubMed ID: 19072163
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Mitochondrial localization of calpain-13 in mouse brain.
    Funajima E; Ito G; Ishiyama E; Ishida K; Ozaki T
    Biochem Biophys Res Commun; 2022 Jun; 609():149-155. PubMed ID: 35429682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.